About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2010 (2010), Article ID 759868, 6 pages
http://dx.doi.org/10.1155/2010/759868
Review Article

B-Cell Pathology in Juvenile Idiopathic Arthritis

1Pediatric Hematology, Oncology and Neurooncology, Pediatric Stem Cell Transplantation Program, Children's Hospital, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
2Pediatric Rheumatology, Immunology and Infectious Diseases, Children's Hospital, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
3Vivantes Children's Hospital, Friedrichshain, Landsberger Allee 49, 10249 Berlin, Germany

Received 29 September 2010; Accepted 4 November 2010

Academic Editor: Ruben Burgos-Vargas

Copyright © 2010 V. Wiegering et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Ravelli and A. Martini, “Juvenile idiopathic arthritis,” The Lancet, vol. 369, no. 9563, pp. 767–778, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. R. E. Petty, T. R. Southwood, and T. R. Southwood, “International league of associations for rheumatology classification of Juvenile idiopathic arthritis: second revision, Edmonton, 2001,” Journal of Rheumatology, vol. 31, no. 2, pp. 390–392, 2004. View at Scopus
  3. C. Macaubas, K. Nguyen, D. Milojevic, J. L. Park, and E. D. Mellins, “Oligoarticular and polyarticular JIA: epidemiology and pathogenesis,” Nature Reviews Rheumatology, vol. 5, no. 11, pp. 616–626, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. McGonagle, A. Aziz, L. J. Dickie, and M. F. McDermott, “An integrated classification of pediatric inflammatory diseases, based on the concepts of autoinflammation and the immunological disease continuum,” Pediatric Research, vol. 65, no. 5, part 2, pp. 38R–45R, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. S. Kamphuis, K. Hrafnkelsdóttir, and K. Hrafnkelsdóttir, “Novel self-epitopes derived from aggrecan, fibrillin, and matrix metalloproteinase-3 drive distinct autoreactive T-cell responses in juvenile idiopathic arthritis and in health,” Arthritis Research and Therapy, vol. 8, Article ID R178, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. G. Steiner, “Auto-antibodies and autoreactive T-cells in rheumatoid arthritis: pathogenetic players and diagnostic tools,” Clinical Reviews in Allergy and Immunology, vol. 32, no. 1, pp. 23–36, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Cambridge, M. J. Leandro, J. C. W. Edwards, M. R. Ehrenstein, M. Salden, M. Bodman-Smith, and A. D. B. Webster, “Serologic changes following B lymphocyte depletion therapy for rheumatoid arthritis,” Arthritis and Rheumatism, vol. 48, no. 8, pp. 2146–2154, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. C. W. Edwards, L. Szczepański, and L. Szczepański, “Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis,” New England Journal of Medicine, vol. 350, no. 25, pp. 2572–2581, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. Takemura, P. A. Klimiuk, A. Braun, J. J. Goronzy, and C. M. Weyand, “T cell activation in rheumatoid synovium is B cell dependent,” Journal of Immunology, vol. 167, no. 8, pp. 4710–4718, 2001. View at Scopus
  10. T. Avčin, R. Cimaz, and R. Cimaz, “Prevalence and clinical significance of anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis,” Annals of the Rheumatic Diseases, vol. 61, no. 7, pp. 608–611, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. J. K. H. Brunner and F. C. Sitzmann, “The diagnostic value of anti-cyclic citrullinated peptide (CCP) antibodies in children with juvenile idiopathic arthritis,” Clinical and Experimental Rheumatology, vol. 24, no. 4, pp. 449–451, 2006. View at Scopus
  12. P. Dewint, I. E. A. Hoffman, and I. E. A. Hoffman, “Effect of age on prevalence of anticitrullinated protein/peptide antibodies in polyarticular juvenile idiopathic arthritis,” Rheumatology, vol. 45, no. 2, pp. 204–208, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. B. E. Gilliam, A. K. Chauhan, J. M. Low, and T. L. Moore, “Measurement of biomarkers in juvenile idiopathic arthritis patients and their significant association with disease severity: a comparative study,” Clinical and Experimental Rheumatology, vol. 26, no. 3, pp. 492–497, 2008. View at Scopus
  14. H. M. Habib, Y. M. Mosaad, and H. M. Youssef, “Anti-cyclic citrullinated peptide antibodies in patients with juvenile idiopathic arthritis,” Immunological Investigations, vol. 37, no. 8, pp. 849–857, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. L. Harel, D. Prais, and D. Prais, “Increased prevalence of antithyroid antibodies and subclinical hypothyroidism in children with juvenile idiopathic arthritis,” Journal of Rheumatology, vol. 33, no. 1, pp. 164–166, 2006. View at Scopus
  16. F. Ingegnoli, N. Del Papa, D. P. Comina, W. Maglione, E. Lupi, V. Gerloni, and F. Fantini, “Autoantibodies to chromatin: prevalence and clinical significance in juvenile rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 22, no. 4, pp. 499–501, 2004. View at Scopus
  17. F. Jung, G. Neuer, and F. A. Bautz, “Antibodies against a peptide sequence located in the linker region of the HMG-1/2 box domains in sera from patients with juvenile rheumatoid arthritis,” Arthritis and Rheumatism, vol. 40, no. 10, pp. 1803–1809, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Kasapcopur, S. Altun, M. Aslan, et al., “Diagnostic accuracy of anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis,” Annals of the Rheumatic Diseases, vol. 63, no. 12, pp. 1687–1689, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. J. L. McGhee, L. M. Kickingbird, and J. N. Jarvis, “Clinical utility of antinuclear antibody tests in children,” BMC Pediatrics, vol. 4, Article ID 13, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. K. J. Murray, W. Szer, and W. Szer, “Antibodies to the 45 kDa DEK nuclear antigen in pauciarticular onset juvenile rheumatoid arthritis and iridocyclitis: selective assocation with MHC gene,” Journal of Rheumatology, vol. 24, no. 3, pp. 560–567, 1997. View at Scopus
  21. R. M. Nisihara, T. Skare, M. Barreto Silva, R. Mourato Silva, and D. J. Munhoz Silva, “Antinucleosome antibodies in juvenile chronic arthritis,” Clinical Rheumatology, vol. 28, no. 12, pp. 1461–1463, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. E. B. Nordal, N. T. Songstad, L. Berntson, T. Moen, B. Straume, and M. Rygg, “Biomarkers of chronic uveitis in juvenile idiopathic arthritis: predictive value of antihistone antibodies and antinuclear antibodies,” Journal of Rheumatology, vol. 36, no. 8, pp. 1737–1743, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. B. C. Perilloux, A. K. Shetty, L. E. Leiva, and A. Gedalia, “Antinuclear antibody (ANA) and ANA profile tests in children with autoimmune disorders: a retrospective study,” Clinical Rheumatology, vol. 19, no. 3, pp. 200–203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Rosenberg and D. M. Cordeiro, “Relationship between sex and antibodies to high mobility group proteins 1 and 2 in juvenile idiopathic arthritis,” Journal of Rheumatology, vol. 27, no. 10, pp. 2489–2493, 2000. View at Scopus
  25. S. Stagi, T. Giani, G. Simonini, and F. Falcini, “Thyroid function, autoimmune thyroiditis and coeliac disease in juvenile idiopathic arthritis,” Rheumatology, vol. 44, no. 4, pp. 517–520, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. C. Stemmer, N. Tuaillon, A. M. Prieur, and S. Muller, “Mapping of B-cell epitopes recognized by antibodies to histones in subsets of juvenile chronic arthritis,” Clinical Immunology and Immunopathology, vol. 76, no. 1, part 1, pp. 82–89, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. R. H. Syed, B. E. Gilliam, and T. L. Moore, “Prevalence and significance of isotypes of anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 7, pp. 1049–1051, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. R. H. Syed, B. E. Gilliam, and T. L. Moore, “Rheumatoid factors and anticyclic citrullinated peptide antibodies in pediatric rheumatology,” Current Rheumatology Reports, vol. 10, no. 2, pp. 156–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. I. S. Szer, H. Sierakowska, and W. Szer, “A novel autoantibody to the putative oncoprotein DEK in pauciarticular onset juvenile rheumatoid arthritis,” Journal of Rheumatology, vol. 21, no. 11, pp. 2136–2142, 1994. View at Scopus
  30. W. Szer, H. Sierakowska, and I. S. Szer, “Antinuclear antibody profile in juvenile rheumatoid arthritis,” Journal of Rheumatology, vol. 18, no. 3, pp. 401–408, 1991. View at Scopus
  31. H. Y. Tomoum, G. A. Mostafa, and E. M. F. El-Shahat, “Autoantibody to heterogeneous nuclear ribonucleoprotein-A2 (RA33) in juvenile idiopathic arthritis: clinical significance,” Pediatrics International, vol. 51, no. 2, pp. 188–192, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. M. Van Rossum, R. Van Soesbergen, and R. Van Soesbergen, “Anti-cyclic citrullinated peptide (anti-CCP) antibodies in children with juvenile idiopathic arthritis,” Journal of Rheumatology, vol. 30, no. 4, pp. 825–828, 2003. View at Scopus
  33. B. Wittemann, G. Neuer, H. Michels, H. Truckenbrodt, and F. A. Bautz, “Autoantibodies to nonhistone chromosomal proteins HMG-1 and HMG-2 in sera of patients with juvenile rheumatoid arthritis,” Arthritis and Rheumatism, vol. 33, no. 9, pp. 1378–1383, 1990. View at Scopus
  34. K. L. Zuklys, I. S. Szer, and W. Szer, “Autoantibodies to DNA topoisomerase II in juvenile rheumatoid arthritis,” Clinical and Experimental Immunology, vol. 84, no. 2, pp. 245–249, 1991. View at Scopus
  35. H. Morbach, H. Dannecker, T. Kerkau, and H. J. Girschick, “Prevalence of antibodies against mutated citrullinated vimentin and cyclic citrullinated peptide in children with juvenile idiopathic arthritis,” Clinical and Experimental Rheumatology, vol. 28, no. 5, p. 800, 2010.
  36. D. Zlacka, P. Vavrincova, T. T. Hien Nguyen, and I. Hromadnikova, “Frequency of anti-hsp60, -65 and -70 antibodies in sera of patients with juvenile idiopathic arthritis,” Journal of Autoimmunity, vol. 27, no. 2, pp. 81–88, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. J. M. Low, A. K. Chauhan, D. A. Kietz, U. Daud, P. H. Pepmueller, and T. L. Moore, “Determination of anti-cyclic citrullinated peptide antibodies in the sera of patients with juvenile idiopathic arthritis,” Journal of Rheumatology, vol. 31, no. 9, pp. 1829–1833, 2004. View at Scopus
  38. G. J. Pruijn, A. Wiik, and W. J. van Venrooij, “The use of citrullinated peptides and proteins for the diagnosis of rheumatoid arthritis,” Arthritis Research & Therapy, vol. 12, no. 1, p. 203, 2010.
  39. A. Ravelli, E. Felici, and E. Felici, “Patients with antinuclear antibody-positive juvenile idiopathic arthritis constitute a homogeneous subgroup irrespective of the course of joint disease,” Arthritis and Rheumatism, vol. 52, no. 3, pp. 826–832, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. P. T. Fawcett, C. D. Rose, K. M. Gibney, M. J. Emerich, B. H. Athreya, and R. A. Doughty, “Use of ELISA to measure antinuclear antibodies in children with juvenile rheumatoid arthritis,” Journal of Rheumatology, vol. 26, no. 8, pp. 1822–1826, 1999. View at Scopus
  41. A. Reiff, H. Haubruck, and M. D. Amos, “Evaluation of a recombinant antigen enzyme-linked immunosorbent assay (ELISA) in the diagnostics of antinuclear antibodies (ANA) in children with rheumatic disorders,” Clinical Rheumatology, vol. 21, no. 2, pp. 103–107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Heiligenhaus, M. Niewerth, and M. Niewerth, “Prevalence and complications of uveitis in juvenile idiopathic arthritis in a population-based nation-wide study in Germany: suggested modification of the current screening guidelines,” Rheumatology, vol. 46, no. 6, pp. 1015–1019, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. R. K. Saurenmann, A. V. Levin, B. M. Feldman, R. M. Laxer, R. Schneider, and E. D. Silverman, “Risk factors for development of uveitis differ between girls and boys with juvenile idiopathic arthritis,” Arthritis and Rheumatism, vol. 62, no. 6, pp. 1824–1828, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. A. Martini, “Are the number of joints involved or the presence of psoriasis still useful tools to identify homogeneous disease entities in juvenile idiopathic arthritis?” Journal of Rheumatology, vol. 30, no. 9, pp. 1900–1903, 2003. View at Scopus
  45. M. G. Barnes, et al., “Biological similarities based on age at onset in oligoarticular and polyarticular subtypes of juvenile idiopathic arthritis,” Arthritis & Rheumatism, vol. 62, no. 11, pp. 3249–3258, 2010.
  46. H. Morbach and H. J. Girschick, “Do B cells play a role in the pathogenesis of juvenile idiopathic arthritis?” Autoimmunity, vol. 42, no. 4, pp. 373–375, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. H. Wardemann, S. Yurasov, A. Schaefer, J. W. Young, E. Meffre, and M. C. Nussenzweig, “Predominant autoantibody production by early human B cell precursors,” Science, vol. 301, no. 5638, pp. 1374–1377, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. E. Meffre and H. Wardemann, “B-cell tolerance checkpoints in health and autoimmunity,” Current Opinion in Immunology, vol. 20, no. 6, pp. 632–638, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. H. Von Boehmer and F. Melchers, “Checkpoints in lymphocyte development and autoimmune disease,” Nature Immunology, vol. 11, no. 1, pp. 14–20, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. H. Morbach, P. Richl, C. Faber, S. K. Singh, and H. J. Girschick, “The kappa immunoglobulin light chain repertoire of peripheral blood B cells in patients with juvenile rheumatoid arthritis,” Molecular Immunology, vol. 45, no. 14, pp. 3840–3846, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. J. M. Low, A. K. Chauhan, and T. L. Moore, “Abnormal κ:λ light chain ratio in circulating immune complexes as a marker for B cell activity in juvenile idiopathic arthritis,” Scandinavian Journal of Immunology, vol. 65, no. 1, pp. 76–83, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. H. J. Girschick, A. C. Grammer, T. Nanki, M. Mayo, and P. E. Lipsky, “RAG1 and RAG2 expression by B cell subsets from human tonsil and peripheral blood,” Journal of Immunology, vol. 166, no. 1, pp. 377–386, 2001. View at Scopus
  53. E. Meffre, F. Papavasiliou, and F. Papavasiliou, “Antigen receptor engagement turns off the V(D)J recombination machinery in human tonsil B cells,” Journal of Experimental Medicine, vol. 188, no. 4, pp. 765–772, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Faber, H. Morbach, S. K. Singh, and H. J. Girschick, “Differential expression patterns of recombination-activating genes in individual mature B cells in juvenile idiopathic arthritis,” Annals of the Rheumatic Diseases, vol. 65, no. 10, pp. 1351–1356, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. J. Samuels, Y. S. Ng, C. Coupillaud, D. Paget, and E. Meffre, “Impaired early B cell tolerance in patients with rheumatoid arthritis,” Journal of Experimental Medicine, vol. 201, no. 10, pp. 1659–1667, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. S. Lindenau, S. Scholze, M. Odendahl, T. Dörner, A. Radbruch, G. R. Burmester, and C. Berek, “Aberrant activation of B cells in patients with rheumatoid arthritis,” Annals of the New York Academy of Sciences, vol. 987, pp. 246–248, 2003. View at Scopus
  57. M. Odendahl, A. Jacobi, and A. Jacobi, “Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus,” Journal of Immunology, vol. 165, no. 10, pp. 5970–5979, 2000. View at Scopus
  58. L. Lepore, M. Del Santo, and M. Del Santo, “Treatment of juvenile idiopathic arthritis with intra-articular triamcinolone hexacetonide: evaluation of clinical effectiveness correlated with circulating ANA and T γ/δ + and B CD5 + lymphocyte populations of synovial fluid,” Clinical and Experimental Rheumatology, vol. 20, no. 5, pp. 719–722, 2002. View at Scopus
  59. C. H. P. Wouters, J. L. Ceuppens, and E. A. M. Stevens, “Different circulating lymphocyte profiles in patients with different subtypes of juvenile idiopathic arthritis,” Clinical and Experimental Rheumatology, vol. 20, no. 2, pp. 239–248, 2002. View at Scopus
  60. F. Martin and J. F. Kearney, “B1 cells: similarities and differences with other B cell subsets,” Current Opinion in Immunology, vol. 13, no. 2, pp. 195–201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Lee, S. Kuchen, R. Fischer, S. Chang, and P. E. Lipsky, “Identification and characterization of a human CD5 pre-naive B cell population,” Journal of Immunology, vol. 182, no. 7, pp. 4116–4126, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. A. Palanichamy, J. Barnard, and J. Barnard, “Novel human transitional B cell populations revealed by B cell depletion therapy,” Journal of Immunology, vol. 182, no. 10, pp. 5982–5993, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. G. P. Sims, R. Ettinger, Y. Shirota, C. H. Yarboro, G. G. Illei, and P. E. Lipsky, “Identification and characterization of circulating human transitional B cells,” Blood, vol. 105, no. 11, pp. 4390–4398, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. S. Wirths and A. Lanzavecchia, “ABCB1 transporter discriminates human resting naive B cells from cycling transitional and memory B cells,” European Journal of Immunology, vol. 35, no. 12, pp. 3433–3441, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. A. Corcione, F. Ferlito, and F. Ferlito, “Phenotypic and functional characterization of switch memory B cells from patients with oligoarticular juvenile idiopathic arthritis,” Arthritis Research & Therapy, vol. 11, no. 5, p. R150, 2009. View at Scopus
  66. A. Gregorio, C. Gambini, and C. Gambini, “Lymphoid neogenesis in juvenile idiopathic arthritis correlates with ANA positivity and plasma cells infiltration,” Rheumatology, vol. 46, no. 2, pp. 308–313, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. V. Krenn, M. M. Souto-Carneiro, and M. M. Souto-Carneiro, “Histopathology and molecular pathology of synovial B-lymphocytes in rheumatoid arthritis,” Histology and Histopathology, vol. 15, no. 3, pp. 791–798, 2000. View at Scopus
  68. H. J. Kim, V. Krenn, G. Steinhauser, and C. Berek, “Plasma cell development in synovial germinal centers in patients with rheumatoid and reactive arthritis,” Journal of Immunology, vol. 162, no. 5, pp. 3053–3062, 1999. View at Scopus
  69. A. E. Schröder, A. Greiner, C. Seyfert, and C. Berek, “Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 1, pp. 221–225, 1996. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Aloisi and R. Pujol-Borrell, “Lymphoid neogenesis in chronic inflammatory diseases,” Nature Reviews Immunology, vol. 6, no. 3, pp. 205–217, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. T. Cantaert, J. Kolln, and J. Kolln, “B lymphocyte autoimmunity in rheumatoid synovitis is independent of ectopic lymphoid neogenesis,” Journal of Immunology, vol. 181, no. 1, pp. 785–794, 2008. View at Scopus
  72. R. M. Thurlings, C. A. Wijbrandts, and C. A. Wijbrandts, “Synovial lymphoid neogenesis does not define a specific clinical rheumatoid arthritis phenotype,” Arthritis and Rheumatism, vol. 58, no. 6, pp. 1582–1589, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. J. G. Parikh, K. A. Tawansy, and N. A. Rao, “Immunohistochemical study of chronic nongranulomatous anterior uveitis in juvenile idiopathic arthritis,” Ophthalmology, vol. 115, no. 10, pp. 1833–1836, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. K. Yanaba, J. D. Bouaziz, T. Matsushita, C. M. Magro, ST. Clair, and T. F. Tedder, “B-lymphocyte contributions to human autoimmune disease,” Immunological Reviews, vol. 223, no. 1, pp. 284–299, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. A. Kuek, B. L. Hazleman, J. H. Gaston, and A. J. K. Östör, “Successful treatment of refractory polyarticular juvenile idiopathic arthritis with rituximab,” Rheumatology, vol. 45, no. 11, pp. 1448–1449, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. J. D. Bouaziz, K. Yanaba, and T. F. Tedder, “Regulatory B cells as inhibitors of immune responses and inflammation,” Immunological Reviews, vol. 224, no. 1, pp. 201–214, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. K. M. Haas, R. Watanabe, and R. Watanabe, “Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice,” Journal of Immunology, vol. 184, no. 9, pp. 4789–4800, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. T. Matsushita, K. Yanaba, J. D. Bouaziz, M. Fujimoto, and T. F. Tedder, “Regulatory B cells inhibit EAE initiation in mice while other B cells promote disease progression,” Journal of Clinical Investigation, vol. 118, no. 10, pp. 3420–3430, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus