About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2011 (2011), Article ID 205904, 10 pages
http://dx.doi.org/10.1155/2011/205904
Review Article

Integrative Structural Biomechanical Concepts of Ankylosing Spondylitis

1Department of Medicine, University of Illinois College of Medicine, Peoria, IL 61656, USA
2Department of Mechanical Engineering, Bradley University, Peoria, IL 61625, USA
3Department of Physical Therapy & Health Science, Bradley University, Peoria, IL 61625, USA
4Department of Electrical and Computer Engineering, Bradley University, Peoria, IL 61625, USA

Received 31 August 2011; Revised 6 October 2011; Accepted 7 October 2011

Academic Editor: Ruben Burgos-Vargas

Copyright © 2011 Alfonse T. Masi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Hersh, R. M. Stecher, W. M. Solomon, R. Wolpaw, and H. Hauser, “Heredity in ankylosing spondylitis; a study of fifty families,” American Journal of Human Genetics, vol. 2, no. 4, pp. 391–408, 1950. View at Scopus
  2. D. A. Brewerton, F. D. Hart, A. Nicholls, M. Caffrey, D. C. James, and R. D. Sturrock, “Ankylosing spondylitis and HL-A 27,” The Lancet, vol. 1, no. 7809, pp. 904–907, 1973. View at Scopus
  3. L. Schlosstein, P. I. Terasaki, R. Bluestone, and C. M. Pearson, “High association of an HL-A antigen, W27, with ankylosing spondylitis,” The New England Journal of Medicine, vol. 288, no. 14, pp. 704–706, 1973. View at Scopus
  4. M. A. Brown, “Genetics of ankylosing spondylitis,” Current Opinion in Rheumatology, vol. 22, no. 2, pp. 126–132, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. T. Masi, “HLA B27 and other host interactions in spondyloarthropathy syndromes,” Journal of Rheumatology, vol. 5, no. 4, pp. 359–362, 1978. View at Scopus
  6. A. T. Masi, “Epidemiology of B27-associated diseases,” Annals of the Rheumatic Diseases, vol. 38, supplement 1, pp. suppl 131–134, 1979.
  7. A. T. Masi and T. A. Medsger, “A new look at the epidemiology of ankylosing spondylitis and related syndromes,” Clinical Orthopaedics and Related Research, vol. 143, pp. 15–29, 1979. View at Scopus
  8. A. T. Masi, “Do sex hormones play a role in ankylosing spondylitis?” Rheumatic Disease Clinics of North America, vol. 18, no. 1, pp. 153–176, 1992. View at Scopus
  9. M. Wilkinson and E. G. Bywaters, “Clinical features and course of ankylosing spondylitis; as seen in a follow-up of 222 hospital referred cases,” Annals of the Rheumatic Diseases, vol. 17, no. 2, pp. 209–228, 1958. View at Scopus
  10. A. T. Masi, “An added perspective on the 2009 SPARTAN and IGAS report: an innate axial myofascial hypertonicity,” Journal of Rheumatology, vol. 38, no. 10, pp. 2092–2094, 2011. View at Publisher · View at Google Scholar · View at PubMed
  11. J. D. Reveille and D. O. Clegg, “Prologue: 2009 Joint meeting of Spondyloarthritis Research and Therapy Network (SPARTAN) and International Genetics of Ankylosing Spondylitis (IGAS),” Journal of Rheumatology, vol. 37, no. 12, pp. 2604–2605, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. Stedman’s Medical Dictionary, Williams & Wilkins, Baltimore, Md, USA, 26th edition, 1995.
  13. M. Benjamin, H. Toumi, J. R. Ralphs, G. Bydder, T. M. Best, and S. Milz, “Where tendons and ligaments meet bone: attachment sites ('entheses') in relation to exercise and/or mechanical load,” Journal of Anatomy, vol. 208, no. 4, pp. 471–490, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. D. McGonagle, L. Stockwin, J. Isaacs, and P. Emery, “An enthesitis based model for the pathogenesis of spondyloarthropathy. Additive effects of microbial adjuvant and biomechanical factors at disease sites,” Journal of Rheumatology, vol. 28, no. 10, pp. 2155–2159, 2001. View at Scopus
  15. A. T. Masi, K. Nair, T. Evans, and Y. Ghandour, “Clinical, biomechanical, and physiological translational interpretations of human resting myofascial tone or tension,” International Journal of Therapeutic Massage & Bodywork, vol. 3, pp. 16–28, 2010.
  16. A. T. Masi, M. Benjamin, and A. Vleeming, “Anatomical, biomechanical, and clinical perspectives on sacroiliac joints: an integrative synthesis of biodynamic mechanisms related to ankylosing spondylitis,” in Movement, Stability, and Lumbopelvic Pain: Integration of Research and Therapy, A. Vleeming, V. Mooney, and R. Stoeckart, Eds., pp. 205–227, Churchill Livingstone, Edinburgh, Scotland, 2007.
  17. D. E. Ingber, “The architecture of life,” Scientific American, vol. 278, no. 1, pp. 48–57, 1998. View at Scopus
  18. D. E. Ingber, “Mechanobiology and diseases of mechanotransduction,” Annals of Medicine, vol. 35, no. 8, pp. 564–577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. A. T. Masi and E. G. Walsh, “Ankylosing spondylitis integrated clinical and physiological perspectives,” Clinical and Experimental Rheumatology, vol. 21, no. 1, pp. 1–8, 2003. View at Scopus
  20. A. T. Masi and J. C. Hannon, “Human resting muscle tone (HRMT): narrative introduction and modern concepts,” Journal of Bodywork and Movement Therapies, vol. 12, no. 4, pp. 320–332, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. S. Mense and A. T. Masi, “Increased muscle tone as a cause of muscle pain,” in Muscle Pain: Understanding the Mechanisms, S. Mense and R. D. Gerwin, Eds., pp. 207–249, Springer, Berlin, Germany, 2010.
  22. J. Forestier, F. Jacqueline, and J. Rotesquerol, La Spondylarthrite Ankylosante: Clinique, Radiologie Anatomie Pathologique, Traitement, Masson & Cie, Paris, France, 1951.
  23. A. T. Masi, S. Sierakowski, and J. M. Kim, “Jacques Forestier's vanished bowstring sign in ankylosing spondylitis: a call to test its validity and possible relation to spinal myofascial hypertonicity,” Clinical and Experimental Rheumatology, vol. 23, no. 6, pp. 760–766, 2005. View at Scopus
  24. A. T. Masi, J. L. Dorsch, and J. Cholewicki, “Are adolescent idiopathic scoliosis and ankylosing spondylitis counter-opposing conditions? A hypothesis on biomechanical contributions predisposing to these spinal disorders,” Clinical and Experimental Rheumatology, vol. 21, no. 5, pp. 573–580, 2003. View at Scopus
  25. G. La Cava, “Enthesitis-traumatic disease of insertions,” JAMA, vol. 169, pp. 254–255, 1959.
  26. G. A. Niepel, D. Kostka, S. Kopecky, and S. Manca, “Enthesopathy,” Acta Rheumatol Balneol Pistiniana, vol. 1, pp. 5–64, 1966.
  27. M. Benjamin and D. McGonagle, “The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites,” Journal of Anatomy, vol. 199, no. 5, pp. 503–526, 2001. View at Scopus
  28. B. Engfeldt, R. Romanus, and S. Yden, “Histological studies of pelvo-spondylitis ossificans (ankylosing spondylitis) correlated with clinical and radiological findings,” Annals of the Rheumatic Diseases, vol. 13, no. 3, pp. 219–228, 1954. View at Scopus
  29. E. G. L. Bywaters, VIth European Congress of Rheumatology, Instituto Portugues de Reumatologia, Lisbon, Portugal, 1967.
  30. E. G. Bywaters, “The early lesions of ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 28, no. 3, p. 330, 1969. View at Scopus
  31. J. Ball, “Enthesopathy of rheumatoid and ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 30, no. 3, pp. 213–223, 1971. View at Scopus
  32. J. Ball, “Articular pathology of ankylosing spondylitis,” Clinical Orthopaedics and Related Research, vol. 143, pp. 30–37, 1979. View at Scopus
  33. J. Ball, “Pathology and pathogenesis,” in Ankylosing Spondylitis, J. M. H. Moll, Ed., chapter 9, pp. 9–12, Churchill Livingstone, Edinburgh, Scotland, 1980.
  34. J. Ball, “The enthesopathy of ankylosing spondylitis,” British Journal of Rheumatology, vol. 22, no. 4, supplement 2, pp. 25–28, 1983. View at Scopus
  35. M. A. Adams, P. Dolan, and D. S. McNally, “The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology,” Matrix Biology, vol. 28, no. 7, pp. 384–389, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. K. M. Khan, J. L. Cook, P. Kannus, N. Maffulli, and S. F. Bonar, “Time to abandon the “tendinitis” myth,” British Medical Journal, vol. 324, no. 7338, pp. 626–627, 2002. View at Scopus
  37. H. M. Shaw and M. Benjamin, “Structure-function relationships of entheses in relation to mechanical load and exercise: review,” Scandinavian Journal of Medicine and Science in Sports, vol. 17, no. 4, pp. 303–315, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. M. Abate, K. Gravare Silbernagel, C. Siljeholm et al., “Pathogenesis of tendinopathies: inflammation or degeneration?” Arthritis Research & Therapy, vol. 11, no. 3, pp. 235–249, 2009. View at Scopus
  39. S.-C. Fu, C. Rolf, Y.-C. Cheuk, P. P. Y. Lui, and K.-M. Chan, “Deciphering the pathogenesis of tendinopathy: a three-stages process,” Sports Medicine, Arthroscopy, Rehabilitation, Therapy and Technology, vol. 2, no. 1, pp. 30–41, 2010. View at Publisher · View at Google Scholar · View at PubMed
  40. M. A. Kahn, Ankylosing Spondylitis, Oxford University Press, New York, NY, USA, 2010.
  41. M. Benjamin, H. Toumi, D. Suzuki, K. Hayashi, and D. McGonagle, “Evidence for a distinctive pattern of bone formation in enthesophytes,” Annals of the Rheumatic Diseases, vol. 68, no. 6, pp. 1003–1010, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. N. Maffulli, P. Sharma, and K. L. Luscombe, “Achilles tendinopathy: aetiology and management,” Journal of the Royal Society of Medicine, vol. 97, no. 10, pp. 472–476, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. J. D. Rees, N. Maffulli, and J. Cook, “Management of tendinopathy,” American Journal of Sports Medicine, vol. 37, no. 9, pp. 1855–1867, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. Benjamin and D. McGonagle, “The enthesis organ concept and its relevance to the spondyloarthropathies,” Advances in Experimental Medicine and Biology, vol. 649, pp. 57–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. D. McGonagle, R. J. Wakefield, L. T. Ai et al., “Distinct topography of erosion and new bone formation in achilles tendon enthesitis: implications for understanding the link between inflammation and bone formation in spondylarthritis,” Arthritis and Rheumatism, vol. 58, no. 9, pp. 2694–2699, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. R. J. Lories and D. L. P. Baeten, “Differences in pathophysiology between rheumatoid arthritis and ankylosing spondylitis,” Clinical and Experimental Rheumatology, vol. 27, no. 4, pp. S10–S14, 2009. View at Scopus
  47. J. H. C. Wang and B. P. Thampatty, “Mechanobiology of adult and stem cells,” International Review of Cell and Molecular Biology, vol. 271, pp. 301–346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. L. Stoll, “Interactions of the innate and adaptive arms of the immune system in the pathogenesis of spondyloarthritis,” Clinical and Experimental Rheumatology, vol. 29, no. 2, pp. 322–330, 2011.
  49. J. M. Fedorczyk, A. E. Barr, S. Rani et al., “Exposure-dependent increases in IL-1β, substance P, CTGF, and tendinosis in flexor digitorum tendons with upper extremity repetitive strain injury,” Journal of Orthopaedic Research, vol. 28, no. 3, pp. 298–307, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. L. M. Sconfienza, E. Silvestri, and M. A. Cimmino, “Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes,” Clinical and Experimental Rheumatology, vol. 28, no. 3, pp. 373–378, 2010. View at Scopus
  51. F. Batista, C. Nery, M. Pinzur et al., “Achilles tendinopathy in diabetes mellitus,” Foot and Ankle International, vol. 29, no. 5, pp. 498–501, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. J. Zwerver, S. W. Bredeweg, and I. van den Akker-Scheek, “Prevalence of jumper's knee among nonelite athletes from different sports: a cross-sectional survey,” American Journal of Sports Medicine, vol. 39, no. 9, pp. 1984–1988, 2011. View at Publisher · View at Google Scholar · View at PubMed
  53. J. T. Blackburn, D. R. Bell, M. F. Norcross, J. D. Hudson, and M. H. Kimsey, “Sex comparison of hamstring structural and material properties,” Clinical Biomechanics, vol. 24, no. 1, pp. 65–70, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. R. J. Butler, H. P. Crowell, and I. M. Davis, “Lower extremity stiffness: implications for performance and injury,” Clinical Biomechanics, vol. 18, no. 6, pp. 511–517, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Rudwaleit, A. Metter, J. Listing, J. Sieper, and J. Braun, “Inflammatory back pain in ankylosing spondylitis: a reassessment of the clinical history for application as classification and diagnostic criteria,” Arthritis and Rheumatism, vol. 54, no. 2, pp. 569–578, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. T. R. Jenkinson, P. A. Mallorie, H. C. Whitelock, L. G. Kennedy, S. L. Garrett, and A. Calin, “Defining spinal mobility in ankylosing spondylitis (AS). The Bath AS metrology index,” Journal of Rheumatology, vol. 21, no. 9, pp. 1694–1698, 1994. View at Scopus
  57. E. Witvrouw, J. Bellemans, R. Lysens, L. Danneels, and D. Cambier, “Intrinsic risk factors for the development of patellar tendinitis in an athletic population: a two-year prospective study,” American Journal of Sports Medicine, vol. 29, no. 2, pp. 190–195, 2001. View at Scopus
  58. J. Braun, R. van den Berg, X. Baraliakos et al., “2010 update of the ASAS/EULAR recommendations for the management of ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 70, no. 6, pp. 896–904, 2011. View at Publisher · View at Google Scholar · View at PubMed
  59. S. Masiero, L. Bonaldo, M. Pigatto, A. Lo Nigro, R. Ramonda, and L. Punzi, “Rehabilitation treatment in patients with ankylosing spondylitis stabilized with tumor necrosis factor inhibitor therapy. A randomized controlled trial,” Journal of Rheumatology, vol. 38, no. 7, pp. 1335–1342, 2011. View at Publisher · View at Google Scholar · View at PubMed
  60. H. Dagfinrud, T. K. Kvien, and K. B. Hagen, “Physiotherapy interventions for ankylosing spondylitis,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD002822, 2008. View at Publisher · View at Google Scholar · View at PubMed
  61. C. Fernández-De-Las-Peñas, C. Alonso-Blanco, M. Morales-Cabezas, and J. C. Miangolarra-Page, “Two exercise interventions for the management of patients with ankylosing spondylitis: a randomized controlled trial,” American Journal of Physical Medicine and Rehabilitation, vol. 84, no. 6, pp. 407–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Vandooren, P. P. Tak, and D. Baeten, “Synovial and mucosal immunopathology in spondyloarthritis,” Advances in Experimental Medicine and Biology, vol. 649, pp. 71–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Peake, K. Nosaka, and K. Suzuki, “Characterization of inflammatory responses to eccentric exercise in humans,” Exercise Immunology Review, vol. 11, pp. 64–85, 2005. View at Scopus
  64. R. J. Lories, F. P. Luyten, and K. de Vlam, “Progress in spondylarthritis. Mechanisms of new bone formation in spondyloarthritis,” Arthritis Research & Therapy, vol. 11, no. 2, p. 221, 2009. View at Scopus
  65. S. J. Pedersen, C. Praveena, R. G. W. Lambert, M. Østergaard, and W. P. Maksymowych, “Resolution of inflammation following treatment of ankylosing spondylitis is associated with new bone formation,” Journal of Rheumatology, vol. 38, no. 7, pp. 1349–1354, 2011. View at Publisher · View at Google Scholar · View at PubMed
  66. J. H. C. Wang and B. P. Thampatty, “An introductory review of cell mechanobiology,” Biomechanics and Modeling in Mechanobiology, vol. 5, no. 1, pp. 1–16, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. H. B. Sun, Y. Li, D. T. Fung, R. J. Majeska, M. B. Schaffler, and E. L. Flatow, “Coordinate regulation of IL-1β and MMP-13 in rat tendons following subrupture fatigue damage,” Clinical Orthopaedics and Related Research, vol. 466, no. 7, pp. 1555–1561, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. R. J. U. Lories, I. Derese, and F. P. Luyten, “Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis,” The Journal of Clinical Investigation, vol. 115, no. 6, pp. 1571–1579, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. D. McGonagle, S. Savic, and M. F. McDermott, “The NLR network and the immunological disease continuum of adaptive and innate immune-mediated inflammation against self,” Seminars in Immunopathology, vol. 29, no. 3, pp. 303–313, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. S. Uderhardt, D. Diarra, J. Katzenbeisser et al., “Blockade of Dickkopf (DKK)-1 induces fusion of sacroiliac joints,” Annals of the Rheumatic Diseases, vol. 69, no. 3, pp. 592–597, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. D. Diarra, M. Stolina, K. Polzer et al., “Dickkopf-1 is a master regulator of joint remodeling,” Nature Medicine, vol. 13, no. 2, pp. 156–163, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. D. Daoussis, S. N. C. Liossis, E. E. Solomou et al., “Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis,” Arthritis and Rheumatism, vol. 62, no. 1, pp. 150–158, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. W. P. Maksymowych, “What do biomarkers tell us about the pathogenesis of ankylosing spondylitis?” Arthritis Research and Therapy, vol. 11, no. 1, article 101, 2009. View at Publisher · View at Google Scholar · View at PubMed
  74. R. J. U. Lories, I. Derese, J. L. Ceuppens, and F. P. Luyten, “Bone Morphogenetic Proteins 2 and 6, expressed in arthritic synovium, are regulated by proinflammatory cytokines and differentially modulate fibroblast-like synoviocyte apoptosis,” Arthritis and Rheumatism, vol. 48, no. 10, pp. 2807–2818, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. D. Wendling, J. P. Cedoz, E. Racadot, and G. Dumoulin, “Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis,” Joint Bone Spine, vol. 74, no. 3, pp. 304–305, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. M. C. Park, Y. B. Park, and S. K. Lee, “Relationship of bone morphogenetic proteins to disease activity and radiographic damage in patients with ankylosing spondylitis,” Scandinavian Journal of Rheumatology, vol. 37, no. 3, pp. 200–204, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. J. A. Di Battista, S. Doré, J. Martel-Pelletier, and J. P. Pelletier, “Prostaglandin E2 stimulates incorporation of proline into collagenase digestible proteins in human articular chondrocytes: identification of an effector autocrine loop involving insulin-like growth factor I,” Molecular and Cellular Endocrinology, vol. 123, no. 1, pp. 27–35, 1996. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Rudwaleit, J. Listing, J. Brandt, J. Braun, and J. Sieper, “Prediction of a major clinical response (BASDAI 50) to tumour necrosis factor alpha blockers in ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 63, pp. 665–670, 2004.
  79. A. Sattler, U. Wagner, M. Rossol et al., “Cytokine-induced human IFN-γ-secreting effector-memory Th cells in chronic autoimmune inflammation,” Blood, vol. 113, no. 9, pp. 1948–1956, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. N. Yeremenko, G. M. M. Rigter, I. Simon, J. D. Canete, P. P. Tak, and D. Baeten, “Identification of robust and disease–specific stromal alterations in spondyloarthritis synovitis,” Annals of the Rheumatic Diseases, vol. 70, supplement 3, aticle 67, 2011.
  81. V. Gurfinkel, T. W. Cacciatore, P. Cordo, F. Horak, J. Nutt, and R. Skoss, “Postural muscle tone in the body axis of healthy humans,” Journal of Neurophysiology, vol. 96, no. 5, pp. 2678–2687, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. R. L. Lieber, Skeletal Muscle Structure, Function, and Plasticity: The Physiological Basis of Rehabilitation, Lippincott Williams & Wilkins, Baltimore, Md, USA, 3rd edition, 2010.
  83. A. Bergmark, “Stability of the lumbar spine. A study in mechanical engineering,” Acta Orthopaedica Scandinavica, Supplement, vol. 60, no. 230, pp. 5–54, 1989.
  84. L. Hansen, M. de Zee, J. Rasmussen, T. B. Andersen, C. Wong, and E. B. Simonsen, “Anatomy and biomechanics of the back muscles in the lumbar spine with reference to biomechanical modeling,” Spine, vol. 31, no. 17, pp. 1888–1899, 2006. View at Publisher · View at Google Scholar · View at PubMed
  85. R. L. Gajdosik, “Passive extensibility of skeletal muscle: review of the literature with clinical implications,” Clinical Biomechanics, vol. 16, no. 2, pp. 87–101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Bizzini and A. F. Mannion, “Reliability of a new, hand-held device for assessing skeletal muscle stiffness,” Clinical Biomechanics, vol. 18, no. 5, pp. 459–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. R. K. Korhonen, A. Vain, E. Vanninen, R. Viir, and J. S. Jurvelin, “Can mechanical myotonometry or electromyography be used for the prediction of intramuscular pressure?” Physiological Measurement, vol. 26, no. 6, pp. 951–963, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. M. Tanter, J. Bercoff, A. Athanasiou et al., “Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging,” Ultrasound in Medicine and Biology, vol. 34, no. 9, pp. 1373–1386, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. A. Athanasiou, A. Tardivon, M. Tanter et al., “Breast lesions: quantitative elastography with supersonic shear imaging—preliminary results,” Radiology, vol. 256, no. 1, pp. 297–303, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. M. Shinohara, K. Sabra, J. L. Gennisson, M. Fink, and M. L. Tanter, “Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction,” Muscle and Nerve, vol. 42, no. 3, pp. 438–441, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus