About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2011 (2011), Article ID 454873, 9 pages
http://dx.doi.org/10.1155/2011/454873
Review Article

Current Surgical Treatment of Knee Osteoarthritis

Department of Orthopaedic Surgery, Hôpital Cantonal Fribourg, 1708 Fribourg, Switzerland

Received 14 August 2010; Revised 4 January 2011; Accepted 28 February 2011

Academic Editor: Annamaria Iagnocco

Copyright © 2011 Karolin Rönn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. T. Felson, A. Naimark, J. Anderson, L. Kazis, W. Castelli, and R. F. Meenan, “The prevalence of knee osteoarthritis in the elderly: the Framingham Osteoarthritis Study,” Arthritis & Rheumatism, vol. 30, pp. 914–918, 1987.
  2. World Health Organiazation, The World Health Report 2002: Reducing Risks, Promoting Healthy Life, WHO, Geneva, Switzerland, 2002.
  3. T. D. Spector, F. Cicuttini, J. Baker, J. Loughlin, and D. Hart, “Genetic influences on osteoarthritis in women: a twin study,” British Medical Journal, vol. 312, no. 7036, pp. 940–944, 1996. View at Scopus
  4. P. M. van der Kraan, E. N. Blaney Davidson, A. Blom, and W. B. van den Berg, “TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis. Modulation and integration of signaling pathways through receptor-Smads,” Osteoarthritis and Cartilage, vol. 17, no. 12, pp. 1539–1545, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. M. Valdes, T. D. Spector, A. Tamm, et al., “Genetic variation in the SMAD3 gene is associated with hip and knee osteoarthritis,” Arthritis and Rheumatism, vol. 62, no. 8, pp. 2347–2352, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. R. Altman, E. Asch, D. Bloch, et al., “Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee,” Arthritis and Rheumatism, vol. 29, no. 8, pp. 1039–1052, 1986. View at Scopus
  7. A. Iagnocco, G. Meenagh, L. Riente, et al., “Ultrasound imaging for the rheumatologist XXIX. Sonographic assessment of the knee in patients with osteoarthritis,” Clinical and Experimental Rheumatology, vol. 28, no. 5, pp. 643–646, 2010.
  8. W. Zhang, R. W. Moskowitz, G. Nuki et al., “OARSI recommendations for the management of hip and knee osteoarthritis—part I: critical appraisal of existing treatment guidelines and systematic review of current research evidence,” Osteoarthritis and Cartilage, vol. 15, no. 9, pp. 981–1000, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. W. Zhang, R. W. Moskowitz, G. Nuki et al., “OARSI recommendations for the management of hip and knee osteoarthritis—part II: OARSI evidence-based, expert consensus guidelines,” Osteoarthritis and Cartilage, vol. 16, no. 2, pp. 137–162, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. W. Zhang, G. Nuki, R. W. Moskowitz et al., “OARSI recommendations for the management of hip and knee osteoarthritis—part III: changes in evidence following systematic cumulative update of research published through January 2009,” Osteoarthritis and Cartilage, vol. 18, no. 4, pp. 476–499, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. R. W. Chang, J. Falconer, S. D. Stulberg, W. J. Arnold, L. M. Manheim, and A. R. Dyer, “A randomized, controlled trial of arthroscopic surgery versus closed- needle joint lavage for patients with osteoarthritis of the knee,” Arthritis and Rheumatism, vol. 36, no. 3, pp. 289–296, 1993. View at Scopus
  12. D. J. Ogilvie-Harris and D. P. Fitsialos, “Arthroscopic management of the degenerative knee,” Arthroscopy, vol. 7, no. 2, pp. 151–157, 1991. View at Publisher · View at Google Scholar · View at Scopus
  13. J. B. Moseley, K. O'Malley, N. J. Petersen, et al., “Continuing medical education: a controlled trial of arthroscopic surgery for osteoarthritis of the knee,” The New England Journal of Medicine, vol. 347, no. 2, pp. 81–88, 2002. View at Scopus
  14. P. Siparsky, M. Ryzewicz, B. Peterson, and R. Bartz, “Arthroscopic treatment of osteoarthritis of the knee: are there any evidence-based indications?” Clinical Orthopaedics and Related Research, vol. 455, pp. 107–112, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. G. F. Dervin, I. G. Stiell, K. Rody, and J. Grabowski, “Effect of arthroscopic débridement for osteoarthritis of the knee on health-related quality of life,” Journal of Bone and Joint Surgery A, vol. 85, no. 1, pp. 10–19, 2003. View at Scopus
  16. M. J. S. Hubbard, “Articular debridement versus washout for degeneration of the medial femoral condyle: a five-year study,” Journal of Bone and Joint Surgery B, vol. 78, no. 2, pp. 217–219, 1996. View at Scopus
  17. R. W. Jackson and D. W. Rouse, “The results of partial arthroscopic meniscectomy in patients over 40 years of age,” Journal of Bone and Joint Surgery B, vol. 64, no. 4, pp. 481–485, 1982. View at Scopus
  18. J. A. Rand, “Role of arthroscopy in osteoarthritis of the knee,” Arthroscopy, vol. 7, no. 4, pp. 358–363, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Laupattarakasem, M. Laopaiboon, P. Laupattarakasem, and C. Sumananont, “Arthroscopic debridement for knee osteoarthritis,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD005118, 2008.
  20. S. Reichenbach, A. W. Rutjes, E. Nüesch, S. Trelle, and P. Jüni, “Joint lavage for osteoarthritis of the knee,” Cochrane Database of Systematic Reviews, vol. 5, Article ID CD007320, 2010.
  21. W. Widuchowski, P. Lukasik, G. Kwiatkowski et al., “Isolated full thickness chondral injuries. Prevalance and outcome of treatment. A retrospective study of 5233 knee arthroscopies,” Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca, vol. 75, no. 5, pp. 382–386, 2008. View at Scopus
  22. K. H. Pridie, “A method of resurfacing osteoarthritic knee joints,” Journal of Bone and Joint Surgery, vol. 41, pp. 618–619, 1959.
  23. J. R. Steadman, K. K. Briggs, J. J. Rodrigo, M. S. Kocher, T. J. Gill, and W. G. Rodkey, “Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up,” Arthroscopy, vol. 19, no. 5, pp. 477–484, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. R. Steadman, W. G. Rodkey, and K. K. Briggs, “Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes,” The Journal of Knee Surgery, vol. 15, no. 3, pp. 170–176, 2002. View at Scopus
  25. J. R. Steadman, W. G. Rodkey, K. K. Briggs, and J. J. Rodrigo, “The microfracture technic in the management of complete cartilage defects in the knee joint,” Orthopaedics, vol. 28, pp. 26–32, 1999.
  26. J. R. Steadman, W. G. Rodkey, and J. J. Rodrigo, “Microfracture: surgical technique and rehabilitation to treat chondral defects,” Clinical Orthopaedics and Related Research, supplement 391, pp. S362–S369, 2001. View at Scopus
  27. K. Mithoefer, T. Mcadams, R. J. Williams, P. C. Kreuz, and B. R. Mandelbaum, “Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis,” American Journal of Sports Medicine, vol. 37, no. 10, pp. 2053–2063, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. L. Hangody, P. Feczkó, L. Bartha, G. Bodó, and G. Kish, “Mosaicplasty for the treatment of articular defects of the knee and ankle,” Clinical Orthopaedics and Related Research, supplement 391, pp. S328–S336, 2001. View at Scopus
  29. L. Hangody and P. Füles, “Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience,” Journal of Bone and Joint Surgery A, vol. 85, no. 1, supplement 2, pp. 25–32, 2003. View at Scopus
  30. L. Hangody and Z. Kárpáti, “New possibilities in the management of severe circumscribed cartilage damage in the knee,” Magyar Traumatologia, Ortopedia, Kezsebeszet, Plasztikai Sebeszet, vol. 37, no. 3, pp. 237–243, 1994. View at Scopus
  31. L. Hangody, G. Kish, Z. Kárpáti, I. Udvarhelyi, I. Szigeti, and M. Bély, “Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice,” Orthopedics, vol. 21, no. 7, pp. 751–756, 1998. View at Scopus
  32. L. Hangody, G. K. Ráthonyi, Z. Duska, G. Vásárhelyi, P. Füles, and L. Módis, “Autologous osteochondral mosaicplasty,” Journal of Bone and Joint Surgery A, vol. 86, supplement 1, pp. 65–72, 2004. View at Scopus
  33. L. Hangody, G. Vásárhelyi, L. R. Hangody et al., “Autologous osteochondral grafting-Technique and long-term results,” Injury, vol. 39, supplement 1, pp. 32–39, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. E. Gautier, D. Kolker, and R. P. Jakob, “Treatment of cartilage defects of the talus by autologous osteochondral grafts,” Journal of Bone and Joint Surgery B, vol. 84, no. 2, pp. 237–244, 2002. View at Scopus
  35. R. P. Jakob, P. Mainil-Varlet, and E. Gautier, “Isolated articular cartilage lesion: repair or regeneration,” Osteoarthritis and Cartilage, vol. 9, supplement A, pp. S3–S5, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Hangody, G. Kish, Z. Kárpáti, I. Szerb, and I. Udvarhelyi, “Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects: a preliminary report,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 5, no. 4, pp. 262–267, 1997. View at Scopus
  37. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” The New England Journal of Medicine, vol. 331, no. 14, pp. 889–895, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. D. B. F. Saris, J. Vanlauwe, J. Victor et al., “Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture,” American Journal of Sports Medicine, vol. 36, no. 2, pp. 235–246, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. H. G. Potter and L. R. Chong, “Magnetic resonance imaging assessment of chondral lesions and repair,” Journal of Bone and Joint Surgery A, vol. 91, supplement 1, pp. 126–131, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. H. G. Potter and L. F. Foo, “Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair,” American Journal of Sports Medicine, vol. 34, no. 4, pp. 661–677, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. K. Hjelle, E. Solheim, T. Strand, R. Muri, and M. Brittberg, “Articular cartilage defects in 1,000 knee arthroscopies,” Arthroscopy, vol. 18, no. 7, pp. 730–734, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Gudas, E. Stankevičius, E. Monastyreckiene, D. Pranys, and R. J. Kalesinskas, “Osteochondral autologous transplantation versus microfracture for the treatment of articular cartilage defects in the knee joint in athletes,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 14, no. 9, pp. 834–842, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. G. Knutsen, J. O. Drogset, L. Engebretsen et al., “A randomized trial comparing autologous chondrocyte implantation with microfracture: findings at five years,” Journal of Bone and Joint Surgery A, vol. 89, no. 10, pp. 2105–2112, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. G. Knutsen, V. Isaksen, O. Johansen et al., “Autologous chondrocyte implantation compared with microfracture in the knee: a randomized trial,” Journal of Bone and Joint Surgery A, vol. 86, no. 3, pp. 455–464, 2004. View at Scopus
  45. J. Wasiak, C. Clar, and E. Villanueva, “Autologous cartilage implantation for full thickness articular cartilage defects of the knee,” Cochrane Database of Systematic Reviews, vol. 3, Article ID CD003323, 2006.
  46. P. Lobenhoffer, J. van Heerwaarden, A. Staubli, and R. P. Jakob, Osteotomie Around the Knee, Thieme, 2008.
  47. J. P. Jackson, “Osteotomy for osteoarthritis of the knee. Proceedings of the Sheffi eld Regional Orthopaedic Club,” The Journal of Bone and Joint Surgery, vol. 40, no. 4, p. 826, 1958.
  48. J. P. Jackson, W. Waugh, and J. P. Green, “Tibial osteotomy for osteoarthritis of the knee,” Journal of Bone and Joint Surgery B, vol. 43, no. 4, pp. 746–751, 1961.
  49. R. Gariépy, “Genu varum treated by high tibial osteotomy. In proceedings of the joint meeting of orthopaedic associations,” The Journal of Bone and Joint Surgery, vol. 46, no. 4, pp. 783–784, 1964.
  50. M. B. Coventry, “Osteotomy of the upper portion of the tibia for degenerative arthritis of the knee. A preliminary report,” The Journal of Bone and Joint Surgery, vol. 47, pp. 984–990, 1965. View at Scopus
  51. P. Lobenhoffer and J. D. Agneskirchner, “Improvements in surgical technique of valgus high tibial osteotomy,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 11, no. 3, pp. 132–138, 2003. View at Scopus
  52. A. E. Staubli, C. De Simoni, R. Babst, and P. Lobenhoffer, “TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia—early results in 92 cases,” Injury, vol. 34, supplement 2, pp. SB55–SB62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Wagner, A. Frenk, and R. Frigg, “New concepts for bone fracture treatment and the Locking Compression Plate,” Surgical Technology International, vol. 12, pp. 271–277, 2004. View at Scopus
  54. P. G. Maquet, Biomechanics of the Knee: With Applications of the Pathogenesis and the Surgical Treatment of Osteoarthritis, Springer, New York, NY, USA, 2nd edition, 1984.
  55. P. Maquet, “Valgus osteotomy for osteoarthritis of the knee,” Clinical Orthopaedics and Related Research, vol. 120, pp. 143–148, 1976. View at Scopus
  56. Y. Fujisawa, K. Masuhara, and S. Shiomi, “The effect of high tibial osteotomy on osteoarthritis of the knee. An arthroscopic study of 54 knee joints,” Orthopedic Clinics of North America, vol. 10, no. 3, pp. 585–608, 1979. View at Scopus
  57. J. D. Aqueskirchner, A. Bernau, A. C. Burkart, and A. B. Imhoff, “Knee instability and varus malangulation—simultaneous cruciate ligament reconstruction and osteotomy (indication,planning and operative technique, results),” Zeitschrift fur Orthopadie und Ihre Grenzgebiete, vol. 140, no. 2, pp. 185–193, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. D. Paley and J. Pfeil, “Principles of deformity correction around the knee,” Orthopade, vol. 29, no. 1, pp. 18–38, 2000. View at Scopus
  59. M. Bonnin and P. Chambat, “Current status of valgus angle, tibial head closing wedge osteotomy in medial gonarthrosis,” Orthopade, vol. 33, no. 2, pp. 135–142, 2004.
  60. J. N. Insall, D. M. Joseph, and C. Msika, “High tibial osteotomy for varus gonarthrosis: a long-term follow-up study,” Journal of Bone and Joint Surgery A, vol. 66, no. 7, pp. 1040–1048, 1984. View at Scopus
  61. K. Yasuda, T. Majima, T. Tsuchida, and K. Kaneda, “A ten- to 15-year follow-up observation of high tibial osteotomy in medial compartment osteoarthrosis,” Clinical Orthopaedics and Related Research, no. 282, pp. 186–195, 1992. View at Scopus
  62. L. Marmor, “Marmor modular knee in unicompartmental disease. Minimum four-year follow-up,” Journal of Bone and Joint Surgery A, vol. 61, no. 3, pp. 347–353, 1979. View at Scopus
  63. D. W. Murray, “Unicompartmental knee replacement: now or never?” Orthopedics, vol. 23, no. 9, pp. 979–980, 2000. View at Scopus
  64. J. T. Moller, R. E. Weeth, J. O. Keller, and S. Nielsen, “Unicompartmental arthroplasty of the knee. Cadaver study of the importance of the anterior cruciate ligament,” Acta Orthopaedica Scandinavica, vol. 56, no. 2, pp. 120–123, 1985. View at Scopus
  65. E. M. H. Obeid, M. A. Adams, and J. H. Newman, “Mechanical properties of articular cartilage in knees with unicompartmental osteoarthritis,” Journal of Bone and Joint Surgery B, vol. 76, no. 2, pp. 315–319, 1994. View at Scopus
  66. S. R. Ridgeway, J. P. McAuley, D. J. Ammeen, and G. A. Engh, “The effect of alignment of the knee on the outcome of unicompartmental knee replacement,” Journal of Bone and Joint Surgery B, vol. 84, no. 3, pp. 351–355, 2002. View at Scopus
  67. T. Borus and T. Thornhill, “Unicompartmental knee arthroplasty,” Journal of the American Academy of Orthopaedic Surgeons, vol. 16, no. 1, pp. 9–18, 2008. View at Scopus
  68. N. M. Boehler, “Unicompartmental knee arthroplasty,” in Knee Arthroplasty, T. Sculco and E. Martucci, Eds., pp. 113–119, Springer, New York, NY, USA, 2001.
  69. E. Koskinen, P. Paavolainen, A. Eskelinen, P. Pulkkinen, and V. Remes, “Unicondylar knee replacement for primary osteoarthritis: a prospective follow-up study of 1,819 patients from the Finnish Arthroplasty Register,” Acta Orthopaedica, vol. 78, no. 1, pp. 128–135, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. U. C. G. Svärd and A. J. Price, “Oxford medial unicompartmental knee arthroplasty. A survival analysis of an independent series,” Journal of Bone and Joint Surgery B, vol. 83, no. 2, pp. 191–194, 2001. View at Scopus
  71. A. P. Sah and R. D. Scott, “Lateral unicompartmental knee arthroplasty through a medial approach: study with an average five-year follow-up,” Journal of Bone and Joint Surgery A, vol. 89, no. 9, pp. 1948–1954, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. T. V. Gunther, D. W. Murray, R. Miller et al., “Lateral unicompartmental arthroplasty with the Oxford meniscal knee,” Knee, vol. 3, no. 1-2, pp. 33–39, 1996. View at Scopus
  73. T. Ashraf, J. H. Newman, R. L. Evans, and C. E. Ackroyd, “Lateral unicompartmental knee replacement,” Journal of Bone and Joint Surgery B, vol. 84, no. 8, pp. 1126–1130, 2002. View at Scopus
  74. C. E. Ackroyd, J. H. Newman, R. Evans, J. D. J. Edridge, and C. C. Joslin, “The avon patellofemoral arthroplasty: five-year survivorship and functional results,” Journal of Bone and Joint Surgery B, vol. 89, no. 3, pp. 310–315, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. P. Cartier, J. L. Sanouiller, and A. Khefacha, “Long-term results with the first patellofemoral prosthesis,” Clinical Orthopaedics and Related Research, no. 436, pp. 47–54, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. R. L. Buly and T. P. Sculco, “Recent advances in total knee replacement surgery,” Current Opinion in Rheumatology, vol. 7, no. 2, pp. 107–113, 1995. View at Scopus
  77. E. M. Keating, J. B. Meding, P. M. Faris, and M. A. Ritter, “Long-term followup of nonmodular total knee replacements,” Clinical Orthopaedics and Related Research, vol. 404, pp. 34–39, 2002. View at Scopus
  78. J. A. Rand and D. M. Ilstrup, “Survivorship analysis of total knee arthroplasty,” Journal of Bone and Joint Surgery A, vol. 73, no. 3, pp. 397–409, 1991. View at Scopus
  79. H. Lundblad, A. Kreicbergs, and K. Å. Jansson, “Prediction of persistent pain after total knee replacement for osteoarthritis,” Journal of Bone and Joint Surgery B, vol. 90, no. 2, pp. 166–171, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. M. A. Ritter, J. D. Lutgring, K. E. Davis, M. E. Berend, J. L. Pierson, and R. M. Meneghini, “The role of flexion contracture on outcomes in primary total knee arthroplasty,” Journal of Arthroplasty, vol. 22, no. 8, pp. 1092–1096, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. A. J. Smith, D. J. Wood, and M. G. Li, “Total knee replacement with and without patellar resurfacing: a prospective, randomised trial using the Profix total knee system,” Journal of Bone and Joint Surgery B, vol. 90, no. 1, pp. 43–49, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. R. S. Burnett, J. L. Boone, K. P. McCarthy, S. Rosenzweig, and R. L. Barrack, “A prospective randomized linical trial of patellar resurfacing and nonresurfacing in bilateral total knee arthroplasty,” Clinical Orthopaedics and Related Research, vol. 464, pp. 65–72, 2007.
  83. J. H. Lonner and P. A. Lotke, “Aseptic complications after total knee arthroplasty,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 7, no. 5, pp. 311–324, 1999. View at Scopus
  84. F. Walter, M. B. Haynes, and D. C. Markel, “A randomized prospective study evaluating the effect of patellar eversion on the early functional outcomes in primary total knee arthroplasty,” Journal of Arthroplasty, vol. 22, no. 4, pp. 509–514, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. A. Berth, D. Urbach, W. Neumann, and F. Awiszus, “Strength and voluntary activation of quadriceps femoris muscle in total knee arthroplasty with midvastus and subvastus approaches,” Journal of Arthroplasty, vol. 22, no. 1, pp. 83–88, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. J. King, D. L. Stamper, D. C. Schaad, and S. S. Leopold, “Minimally invasive total knee arthroplasty compared with traditional total knee arthroplasty: assessment of the learning curve and the postoperative recuperative period,” Journal of Bone and Joint Surgery A, vol. 89, no. 7, pp. 1497–1503, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. T. Karachalios, D. Giotikas, N. Roidis, L. Poultsides, K. Bargiotas, and K. N. Malizos, “Total knee replacement performed with either a mini-midvastus or a standard approach: a prospective randomised clinical and radiological trial,” Journal of Bone and Joint Surgery B, vol. 90, no. 5, pp. 584–591, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. S. S. Leopold, “Minimally invasive total knee arthroplasty for osteoarthritis,” The New England Journal of Medicine, vol. 360, no. 17, pp. 1749–1758, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. W. C. H. Jacobs, D. J. Clement, and A. B. Wymenga, “Retention versus removal of the posterior cruciate ligament in total knee replacement: a systematic literature review within the Cochrane framework,” Acta Orthopaedica, vol. 76, no. 6, pp. 757–768, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. R. Chaudhary, L. A. Beaupré, and D. W. C. Johnston, “Knee range of motion during the first two years after use of posterior cruciate-stabilizing or posterior cruciate-retaining total knee prostheses: a randomized clinical trial,” Journal of Bone and Joint Surgery A, vol. 90, no. 12, pp. 2579–2586, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. J. E. Arbuthnot and R. B. Brink, “Assessment of the antero-posterior and rotational stability of the anterior cruciate ligament analogue in a guided motion bi-cruciate stabilized total knee arthroplasty,” Journal of Medical Engineering and Technology, vol. 33, no. 8, pp. 610–615, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. J. Bellemans, S. Banks, J. Victor, H. Vandenneucker, and A. Moemans, “Fluoroscopic analysis of the kinematics of deep flexion in total knee arthroplasty. Influence of posterior condylar offset,” Journal of Bone and Joint Surgery, vol. 84, no. 1, pp. 50–53, 2002.
  93. Y. H. Kim, Y. Choi, and J. S. Kim, “Range of motion of standard and high-flexion posterior cruciate-retaining total knee prostheses: a prospective randomized study,” Journal of Bone and Joint Surgery A, vol. 91, no. 8, pp. 1874–1881, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. R. Gandhi, D. Tsvetkov, J. R. Davey, and N. N. Mahomed, “Survival and clinical function of cemented and uncemented prostheses in total knee replacement: a meta-analysis,” Journal of Bone and Joint Surgery B, vol. 91, no. 7, pp. 889–895, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. A. V. Lombardi, C. C. Berasi, and K. R. Berend, “Evolution of tibial fixation in total knee arthroplasty,” Journal of Arthroplasty, vol. 22, supplement 4, pp. 25–29, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. K. G. Nilsson, J. Kärrholm, L. Carlsson, and T. Dalén, “Hydroxyapatite coating versus cemented fixation of the tibial component in total knee arthroplasty: prospective randomized comparison of hydroxyapatite- coated and cemented tibial components with 5-year follow-up using radiostereometry,” Journal of Arthroplasty, vol. 14, no. 1, pp. 9–20, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. M. A. R. Freeman and R. Tennant, “The scientific basis of cement versus cementless fixation,” Clinical Orthopaedics and Related Research, no. 276, pp. 19–25, 1992. View at Scopus
  98. K. Bauwens, G. Matthes, M. Wich et al., “Navigated total knee replacement: a meta-analysis,” Journal of Bone and Joint Surgery A, vol. 89, no. 2, pp. 261–269, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. J. M. Spencer, S. K. Chauhan, K. Sloan, A. Taylor, and R. J. Beaver, “Computer navigation versus conventional total knee replacement: no difference in functional results at two years,” Journal of Bone and Joint Surgery, vol. 89, pp. 477–480, 2007.
  100. M. B. Collier, C. A. Engh, J. P. McAuley, and G. A. Engh, “Factors associated with the loss of thickness of polyethylene tibial bearings after knee arthroplasty,” Journal of Bone and Joint Surgery A, vol. 89, no. 6, pp. 1306–1314, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus