About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2012 (2012), Article ID 391567, 7 pages
http://dx.doi.org/10.1155/2012/391567
Review Article

Rheumatoid Arthritis and Primary Biliary Cirrhosis: Cause, Consequence, or Coincidence?

1Institute of Liver Studies, Division of Transplantation Immunology and Mucosal Biology, School of Medicine, King's College London, London SE5 9RS, UK
2Department of Medicine, University Hospital of Larissa, University of Thessaly Medical School, Viopolis, 41110 Larissa, Greece
3The Sheila Sherlock Liver Centre and University Department of Surgery, Royal Free Hospital, London NW32QG, UK

Received 28 July 2012; Accepted 28 September 2012

Academic Editor: Pierre Youinou

Copyright © 2012 Daniel S. Smyk et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Hohenester, R. P. J. Oude-Elferink, and U. Beuers, “Primary biliary cirrhosis,” Seminars in Immunopathology, vol. 31, no. 3, pp. 283–307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. M. M. Kaplan and M. E. Gershwin, “Primary biliary cirrhosis,” The New England Journal of Medicine, vol. 353, no. 12, pp. 1261–1273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kumagi and E. J. Heathcote, “Primary biliary cirrhosis,” Orphanet Journal of Rare Diseases, vol. 3, no. 1, article 1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. K. D. Lindor, M. E. Gershwin, R. Poupon, M. Kaplan, N. V. Bergasa, and E. J. Heathcote, “Primary biliary cirrhosis,” Hepatology, vol. 50, no. 1, pp. 291–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Neuberger, “Primary biliary cirrhosis,” The Lancet, vol. 350, no. 9081, pp. 875–879, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. E. J. Heathcote, “Management of primary biliary cirrhosis,” Hepatology, vol. 31, no. 4, pp. 1005–1013, 2000. View at Scopus
  7. R. Poupon, “Primary biliary cirrhosis: a 2010 update,” Journal of Hepatology, vol. 52, no. 5, pp. 745–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. A. Aoki, C. M. Roifman, Z. X. Lian et al., “IL-2 receptor alpha deficiency and features of primary biliary cirrhosis,” Journal of Autoimmunity, vol. 27, no. 1, pp. 50–53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Dahlan, L. Smith, D. Simmonds et al., “Pediatric-onset primary biliary cirrhosis,” Gastroenterology, vol. 125, no. 5, pp. 1476–1479, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Invernizzi, M. G. Alessio, D. S. Smyk, et al., “Autoimmune hepatitis type 2 associated with an unexpected and transient presence of primary biliary cirrhosis-specific antimitochondrial antibodies: a case study and review of the literature,” BMC Gastroenterology, vol. 12, article 92, 2012.
  11. K. Boonstra, U. Beuers, and C. Y. Ponsioen, “Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review,” Journal of Hepatology, vol. 56, no. 5, pp. 1181–1188, 2012.
  12. O. E. W. James, R. Bhopal, D. Howel, J. Gray, A. D. Burt, and J. V. Metcalf, “Primary biliary cirrhosis once rare, now common in the United Kingdom?” Hepatology, vol. 30, no. 2, pp. 390–394, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. W. R. Kim, K. D. Lindor, G. R. Locke et al., “Epidemiology and natural history of primary biliary cirrhosis in a U.S. community,” Gastroenterology, vol. 119, no. 6, pp. 1631–1636, 2000. View at Scopus
  14. C. Selmi, P. Invernizzi, E. B. Keefe et al., “Epidemiology and pathogenesis of primary biliary cirrhosis,” Journal of Clinical Gastroenterology, vol. 38, no. 3, pp. 264–271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Sood, P. J. Gow, J. M. Christie, and P. W. Angus, “Epidemiology of primary biliary cirrhosis in Victoria, Australia: high prevalence in migrant populations,” Gastroenterology, vol. 127, no. 2, pp. 470–475, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. D. P. Bogdanos, G. Mieli-Vergani, and D. Vergani, “Autoantibodies and their antigens in autoimmune hepatitis,” Seminars in Liver Disease, vol. 29, no. 3, pp. 241–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. P. Bogdanos and L. Komorowski, “Disease-specific autoantibodies in primary biliary cirrhosis,” Clinica Chimica Acta, vol. 412, no. 7-8, pp. 502–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. S. C. Leung, R. L. Coppel, A. Ansari, S. Munoz, and M. E. Gershwin, “Antimitochondrial antibodies in primary biliary cirrhosis,” Seminars in Liver Disease, vol. 17, no. 1, pp. 61–69, 1997. View at Scopus
  19. D. P. Bogdanos, A. Pares, J. Rodés et al., “Primary biliary cirrhosis specific antinuclear antibodies in patients from Spain,” American Journal of Gastroenterology, vol. 99, no. 4, pp. 763–765, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Invernizzi, M. Podda, P. M. Battezzati et al., “Autoantibodies against nuclear pore complexes are associated with more active and severe liver disease in primary biliary cirrhosis,” Journal of Hepatology, vol. 34, no. 3, pp. 366–372, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Muratori, A. Granito, P. Muratori, G. Pappas, and F. B. Bianchi, “Antimitochondrial antibodies and other antibodies in primary biliary cirrhosis: diagnostic and prognostic value,” Clinics in Liver Disease, vol. 12, no. 2, pp. 261–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. P. Bogdanos, C. Rigamonti, and D. Smyk, “Mytilinaiou MG, Rigopoulou EI, Burroughs AK,” in Systemic Sclerosis—An Update on the Aberrant Immune System and Clinical Features, T. Radstake, Ed., pp. 151–166, Intech, Rijeka, Croatia, 2012.
  23. C. Rigamonti, D. P. Bogdanos, M. G. Mytilinaiou, et al., “Primary biliary cirrhosis associated with systemic sclerosis: diagnostic and clinical challenges,” International Journal of Rheumatology, vol. 2011, Article ID 976427, 2011.
  24. T. Kumagi and M. Onji, “Presentation and diagnosis of primary biliary cirrhosis in the 21st century,” Clinics in Liver Disease, vol. 12, no. 2, pp. 243–259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Duarte-Rey, D. P. Bogdanos, P. S. Leung, J. M. Anaya, and M. E. Gershwin, “IgM predominance in autoimmune disease: genetics and gender,” Autoimmunity Reviews, vol. 11, no. 6-7, pp. A404–A412, 2012.
  26. E. I. Rigopoulou, E. T. Davies, D. P. Bogdanos et al., “Antimitochondrial antibodies of immunoglobulin G3 subclass are associated with a more severe disease course in primary biliary cirrhosis,” Liver International, vol. 27, no. 9, pp. 1226–1231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Bizzaro, G. Covini, F. Rosina et al., “Overcoming a “probable” diagnosis in antimitochondrial antibody negative primary biliary cirrhosis: study of 100 sera and review of the literature,” Clinical Reviews in Allergy and Immunology, vol. 42, no. 3, pp. 288–297, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Dähnrich, A. Pares, L. Caballeria et al., “New ELISA for detecting primary biliary cirrhosis-specific antimitochondrial antibodies,” Clinical Chemistry, vol. 55, no. 5, pp. 978–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Invernizzi, A. Crosignani, P. M. Battezzati et al., “Comparison of the clinical features and clinical course of antimitochondrial antibody-positive and -negative primary biliary cirrhosis,” Hepatology, vol. 25, no. 5, pp. 1090–1095, 1997. View at Scopus
  30. E. I. Rigopoulou, D. P. Bogdanos, C. Liaskos et al., “Anti-mitochondrial antibody immunofluorescent titres correlate with the number and intensity of immunoblot-detected mitochondrial bands in patients with primary biliary cirrhosis,” Clinica Chimica Acta, vol. 380, no. 1-2, pp. 118–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Bernal, F. Meda, Y. Ma, D. P. Bogdanos, and D. Vergani, “Disease-specific autoantibodies in patients with acute liver failure: the King's College London experience,” Hepatology, vol. 47, no. 3, pp. 1096–1097, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. S. C. Leung, L. Rossaro, P. A. Davis et al., “Antimitochondrial antibodies in acute liver failure: implications for primary biliary cirrhosis,” Hepatology, vol. 46, no. 5, pp. 1436–1442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Liaskos, D. P. Bogdanos, E. I. Rigopoulou, and G. N. Dalekos, “Development of antimitochondrial antibodies in patients with autoimmune hepatitis: art of facts or an artifact?” Journal of Gastroenterology and Hepatology, vol. 22, no. 3, pp. 454–455, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. V. Metcalf, H. C. Mitchison, J. M. Palmer, D. E. Jones, M. F. Bassendine, and O. F. W. James, “Natural history of early primary biliary cirrhosis,” The Lancet, vol. 348, no. 9039, pp. 1399–1402, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Duarte-Rey, D. Bogdanos, C. Y. Yang, et al., “Primary biliary cirrhosis and the nuclear pore complex,” Autoimmunity Reviews, vol. 11, no. 12, pp. 898–902, 2012.
  36. S. Itoh, T. Ichida, T. Yoshida et al., “Autoantibodies against a 210 kDa glycoprotein of the nuclear pore complex as a prognostic marker in patients with primary biliary cirrhosis,” Journal of Gastroenterology and Hepatology, vol. 13, no. 3, pp. 257–265, 1998. View at Scopus
  37. J. Wesierska-Gadek, H. Hohenauer, E. Hitchman, and E. Penner, “Autoantibodies from patients with primary biliary cirrhosis preferentially react with the amino-terminal domain of nuclear pore complex glycoprotein gp210,” Journal of Experimental Medicine, vol. 182, no. 4, pp. 1159–1162, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. M. G. Mytilinaiou, W. Meyer, T. Scheper, et al., “Diagnostic and clinical utility of antibodies against the nuclear body promyelocytic leukaemia and Sp100 antigens in patients with primary biliary cirrhosis,” Clinica Chimica Acta, vol. 413, no. 15-16, pp. 1211–1216, 2012.
  39. E. I. Rigopoulou, E. T. Davies, A. Pares et al., “Prevalence and clinical significance of isotype specific antinuclear antibodies in primary biliary cirrhosis,” Gut, vol. 54, no. 4, pp. 528–532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Gabeta, G. L. Norman, N. Gatselis et al., “IgA anti-b2GPI antibodies in patients with autoimmune liver diseases,” Journal of Clinical Immunology, vol. 28, no. 5, pp. 501–511, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Liaskos, G. L. Norman, A. Moulas et al., “Prevalence of gastric parietal cell antibodies and intrinsic factor antibodies in primary biliary cirrhosis,” Clinica Chimica Acta, vol. 411, no. 5-6, pp. 411–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Muratori, L. Muratori, M. Guidi et al., “Anti-Saccharomyces cerevisiae antibodies (ASCA) and autoimmune liver diseases,” Clinical and Experimental Immunology, vol. 132, no. 3, pp. 473–476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. F. W. Miller, K. M. Pollard, C. G. Parks, et al., “Criteria for environmentally associated autoimmune diseases,” Journal of Autoimmunity. In press.
  44. C. Selmi, P. S. Leung, D. H. Sherr, et al., “Mechanisms of environmental influence on human autoimmunity: a national institute of environmental health sciences expert panel workshop,” Journal of Autoimmunity. In press.
  45. G. Disanto, G. Chaplin, J. M. Morahan, et al., “Month of birth, vitamin D and risk of immune mediated disease: a case control study,” BMC Medicine, vol. 10, no. 1, article 69, 2012.
  46. D. S. Smyk, E. I. Rigopoulou, L. Muratori, et al., “Smoking as a risk factor for autoimmune liver disease: what we can learn from primary biliary cirrhosis,” Annals of Hepatology, vol. 11, no. 1, pp. 7–14, 2012.
  47. F. K. Varyani, J. West, and T. R. Card, “An increased risk of urinary tract infection precedes development of primary biliary cirrhosis,” BMC Gastroenterology, vol. 11, article 95, 2011.
  48. M. S. Longhi, Y. Ma, D. P. Bogdanos, P. Cheeseman, G. Mieli-Vergani, and D. Vergani, “Impairment of CD4+CD25+ regulatory T-cells in autoimmune liver disease,” Journal of Hepatology, vol. 41, no. 1, pp. 31–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Monteleone, F. Pallone, and G. Monteleone, “Th17-related cytokines: new players in the control of chronic intestinal inflammation,” BMC Medicine, vol. 9, article 122, 2011.
  50. J. M. Anaya, R. Corena, J. Castiblanco, A. Rojas-Villarraga, and Y. Shoenfeld, “The kaleidoscope of autoimmunity: multiple autoimmune syndromes and familial autoimmunity,” Expert Review of Clinical Immunology, vol. 3, no. 4, pp. 623–635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Blank and M. E. Gershwin, “Autoimmunity: from the mosaic to the kaleidoscope,” Journal of Autoimmunity, vol. 30, no. 1-2, pp. 1–4, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. I. Dalal, A. Levine, E. Somekh, A. Mizrahi, and A. Hanukoglu, “Chronic urticaria in children: expanding the “autoimmune kaleidoscope”,” Pediatrics, vol. 106, no. 5, pp. 1139–1141, 2000. View at Scopus
  53. M. Lorber, M. E. Gershwin, and Y. Shoenfeld, “The coexistence of systemic lupus erythematosus with other autoimmune diseases: the kaleidoscope of autoimmunity,” Seminars in Arthritis and Rheumatism, vol. 24, no. 2, pp. 105–113, 1994. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Shoenfeld, “The kaleidoscope of autoimmunity,” Autoimmunity, vol. 15, no. 3, pp. 245–252, 1993. View at Scopus
  55. Y. Shoenfeld, M. Lorber, T. Yucel, and H. Yazici, “Primary antiphospholipid syndrome emerging following thymectomy for myasthenia gravis: additional evidence for the kaleidoscope of autoimmunity,” Lupus, vol. 6, no. 5, pp. 474–476, 1997. View at Scopus
  56. P. Weiss and Y. Shoenfeld, “Shifts in autoimmune diseases: the kaleidoscope of autoimmunity,” Israel Journal of Medical Sciences, vol. 27, no. 4, pp. 215–217, 1991. View at Scopus
  57. M. Fallena Zonana, E. Reyes, and A. K. Weisman, “Coexistence of four autoimmune diseases in one patient: the kaleidoscope of autoimmunity,” Journal of Clinical Rheumatology, vol. 8, no. 6, pp. 322–325, 2002. View at Scopus
  58. J. L. Siegel, H. Luthra, J. Donlinger, P. Angulo, and K. Lindor, “Association of primary biliary cirrhosis and rheumatoid arthritis,” Journal of Clinical Rheumatology, vol. 9, no. 6, pp. 340–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Clark and K. Sack, “Deforming arthropathy complicating primary biliary cirrhosis,” Journal of Rheumatology, vol. 18, no. 4, pp. 619–621, 1991. View at Scopus
  60. J. Duffy, “Arthritis and hepatitis,” Bulletin on the Rheumatic Diseases, vol. 47, no. 2, pp. 1–5, 1998.
  61. K. Lauritsen and H. Diederichsen, “Arthritis in patients with antimitochondrial antibodies,” Scandinavian Journal of Rheumatology, vol. 12, no. 4, pp. 331–335, 1983. View at Scopus
  62. W. J. Marx and D. J. O'Connell, “Arthritis of primary biliary cirrhosis,” Archives of Internal Medicine, vol. 139, no. 2, pp. 213–216, 1979. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Sherlock and P. J. Scheuer, “The presentation and diagnosis of 100 patients with primary biliary cirrhosis,” The New England Journal of Medicine, vol. 289, no. 13, pp. 674–678, 1973. View at Scopus
  64. C. Caramella, J. Avouac, P. Sogni, X. Puéchal, A. Kahan, and Y. Allanore, “Association between rheumatoid arthritis and primary biliary cirrhosis,” Joint Bone Spine, vol. 74, no. 3, pp. 279–281, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. K. Inoue, J. Hirohara, T. Makano et al., “Prediction of prognosis of primary biliary cirrhosis in Japan,” Liver, vol. 15, no. 2, pp. 70–77, 1995. View at Scopus
  66. B. Marasini, M. Gagetta, V. Rossi, and P. Ferrari, “Rheumatic disorders and primary biliary cirrhosis: an appraisal of 170 Italian patients,” Annals of the Rheumatic Diseases, vol. 60, no. 11, pp. 1046–1049, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Selmi, M. De Santis, and M. E. Gershwin, “Liver involvement in subjects with rheumatic disease,” Arthritis Research & Therapy, vol. 13, no. 3, article 226, 2011.
  68. E. M. Ruderiman, J. M. Crawford, A. Maier, J. J. Liu, E. M. Gravallese, and M. E. Weinblatt, “Histologic liver abnormalities in an autopsy series of patients with rheumatoid arthritis,” British Journal of Rheumatology, vol. 36, no. 2, pp. 210–213, 1997. View at Scopus
  69. A. Datta, S. D. Deodhar, U. Datta, and S. Sehgal, “Non-organ specific and organ specific antibodies in rheumatoid arthritis,” Indian Journal of Medical Research B, vol. 92, pp. 228–232, 1990. View at Scopus
  70. C. Corpechot, Y. Chrétien, O. Chazouillères, and R. Poupon, “Demographic, lifestyle, medical and familial factors associated with primary biliary cirrhosis,” Journal of Hepatology, vol. 53, no. 1, pp. 162–169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. E. Gershwin, C. Selmi, H. J. Worman et al., “Risk factors and comorbidities in primary biliary cirrhosis: a controlled interview-based study of 1032 patients,” Hepatology, vol. 42, no. 5, pp. 1194–1202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Parikh-Patel, E. B. Gold, H. Worman, K. E. Krivy, and M. E. Gershwin, “Risk factors for primary biliary cirrhosis in a cohort of patients from the United States,” Hepatology, vol. 33, no. 1, pp. 16–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. M. I. Prince, S. J. Ducker, and O. F. W. James, “Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations,” Gut, vol. 59, no. 4, pp. 508–512, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. G. M. Hirschfield and P. Invernizzi, “Progress in the genetics of primary biliary cirrhosis,” Seminars in Liver Disease, vol. 31, no. 2, pp. 147–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. P. Invernizzi, “Human leukocyte antigen in primary biliary cirrhosis: an old story now reviving,” Hepatology, vol. 54, no. 2, pp. 714–723, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Invernizzi, M. Ransom, S. Raychaudhuri, et al., “Classical HLA-DRB1 and DPB1 alleles account for HLA associations with primary biliary cirrhosis,” Genes and Immunity, vol. 13, no. 6, pp. 461–468, 2012.
  77. P. Invernizzi, C. Selmi, F. Poli et al., “Human leukocyte antigen polymorphisms in Italian primary biliary cirrhosis: a multicenter study of 664 patients and 1992 healthy controls,” Hepatology, vol. 48, no. 6, pp. 1906–1912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. G. F. Mells, J. A. B. Floyd, K. I. Morley et al., “Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis,” Nature Genetics, vol. 43, no. 4, pp. 329–332, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Selmi, N. J. Torok, A. Affronti, and M. E. Gershwin, “Genomic variants associated with primary biliary cirrhosis,” Genome Medicine, vol. 2, no. 1, article 5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Tanaka, P. Invernizzi, H. Ohira et al., “Replicated association of 17q12-21 with susceptibility of primary biliary cirrhosis in a Japanese cohort,” Tissue Antigens, vol. 78, no. 1, pp. 65–68, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Tanaka, H. Ohira, K. Kikuchi et al., “Genetic association of Fc receptor-like 3 polymorphisms with susceptibility to primary biliary cirrhosis: ethnic comparative study in Japanese and Italian patients,” Tissue Antigens, vol. 77, no. 3, pp. 239–243, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. P. Danoy, W. Meng, H. Johanna et al., “Association of variants in MMEL1 and CTLA4 with rheumatoid arthritis in the Han Chinese population,” Annals of the Rheumatic Diseases, vol. 70, pp. 1793–1797, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Nanki, K. Takada, Y. Komano et al., “Chemokine receptor expression and functional effects of chemokines on B cells: implication in the pathogenesis of rheumatoid arthritis,” Arthritis Research and Therapy, vol. 11, no. 5, article R149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Okada, C. Terao, K. Ikari, et al., “Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population,” Nature Genetics, vol. 44, no. 5, pp. 511–516, 2012.
  85. E. A. Stahl, S. Raychaudhuri, E. F. Remmers et al., “Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci,” Nature Genetics, vol. 42, no. 6, pp. 508–514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. R. F. van Vollenhoven, “Sex differences in rheumatoid arthritis: more than meets the eye,” BMC Medicine, vol. 7, article 12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. E. J. Walker, G. M. Hirschfield, C. Xu et al., “CTLA4/ICOS gene variants and haplotypes are associated with rheumatoid arthritis and primary biliary cirrhosis in the Canadian population,” Arthritis and Rheumatism, vol. 60, no. 4, pp. 931–937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. F. Meda, M. Folci, A. Baccarelli, and C. Selmi, “The epigenetics of autoimmunity,” Cellular and Molecular Immunology, vol. 8, no. 3, pp. 226–236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Renaudineau, “The revolution of epigenetics in the field of autoimmunity,” Clinical Reviews in Allergy and Immunology, vol. 39, no. 1, pp. 1–2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. M. M. Mitchell, A. Lleo, L. Zammataro et al., “Epigenetic investigation of variably X chromosome inactivated genes in monozygotic female twins discordant for primary biliary cirrhosis,” Epigenetics, vol. 6, no. 1, pp. 95–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. C. Ospelt, K. A. Reedquist, S. Gay, and P. P. Tak, “Inflammatory memories: is epigenetics the missing link to persistent stromal cell activation in rheumatoid arthritis?” Autoimmunity Reviews, vol. 10, no. 9, pp. 519–524, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. L. C. Huber, M. Brock, H. Hemmatazad et al., “Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1087–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. T. Kawabata, K. Nishida, K. Takasugi et al., “Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-alpha in synovial tissue of rheumatoid arthritis,” Arthritis Research and Therapy, vol. 12, no. 4, article R133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. H. S. Lin, C. Y. Hu, H. Y. Chan et al., “Anti-rheumatic activities of histone deacetylase (HDAC) inhibitors in vivo in collagen-induced arthritis in rodents,” British Journal of Pharmacology, vol. 150, no. 7, pp. 862–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Nishida, T. Komiyama, S. I. Miyazawa et al., “Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21 WAF1/Cip1 expression,” Arthritis and Rheumatism, vol. 50, no. 10, pp. 3365–3376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Lefèvre, A. Knedla, C. Tennie et al., “Synovial fibroblasts spread rheumatoid arthritis to unaffected joints,” Nature Medicine, vol. 15, no. 12, pp. 1414–1420, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Miozzo, C. Selmi, B. Gentilin et al., “Preferential X chromosome loss but random inactivation characterize primary biliary cirrhosis,” Hepatology, vol. 46, no. 2, pp. 456–462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. G. Chabchoub, E. Uz, A. Maalej et al., “Analysis of skewed X-chromosome inactivation in females with rheumatoid arthritis and autoimmune thyroid diseases,” Arthritis Research and Therapy, vol. 11, no. 4, article R106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. D. P. Bogdanos, H. Baum, D. Vergani, and A. K. Burroughs, “The role of E. coli infection in the pathogenesis of primary biliary cirrhosis,” Disease Markers, vol. 29, no. 6, pp. 301–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. M. M. Newkirk, A. Zbar, M. Baron, and A. R. Manges, “Distinct bacterial colonization patterns of Escherichia coli subtypes associate with rheumatoid factor status in early inflammatory arthritis,” Rheumatology, vol. 49, no. 7, pp. 1311–1316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. V. Pordeus, M. Szyper-Kravitz, R. A. Levy, N. M. Vaz, and Y. Shoenfeld, “Infections and autoimmunity: a panorama,” Clinical Reviews in Allergy and Immunology, vol. 34, no. 3, pp. 283–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. M. M. Newkirk, R. Goldbach-Mansky, B. W. Senior, J. Klippel, H. R. Schumacher Jr., and H. S. El-Gabalawy, “Elevated levels of IgM and IgA antibodies to Proteus mirabilis and IgM antibodies to Escherichia coli are associated with early rheumatoid factor (RF)-positive rheumatoid arthritis,” Rheumatology, vol. 44, no. 11, pp. 1433–1441, 2005. View at Publisher · View at Google Scholar · View at Scopus