About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2012 (2012), Article ID 604187, 11 pages
http://dx.doi.org/10.1155/2012/604187
Review Article

Silicon, a Possible Link between Environmental Exposure and Autoimmune Diseases: The Case of Rheumatoid Arthritis

Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia

Received 7 August 2012; Accepted 13 September 2012

Academic Editor: Francesco Trotta

Copyright © 2012 Cesar A. Speck-Hernandez and Gladis Montoya-Ortiz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. B. McInnes and G. Schett, “The pathogenesis of rheumatoid arthritis,” The New England Journal of Medicine, vol. 365, no. 23, pp. 2205–2219, 2011. View at Scopus
  2. M.-C. Boissier, L. Semerano, S. Challal, N. Saidenberg-Kermanac'h, and G. Falgarone, “Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction,” Journal of Autoimmunity, vol. 39, no. 3, pp. 222–228, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Jutzi and U. Schubert, Silicon Chemistry: From the Atom to Extended Systems, Wiley-VCH GmbH & Co. KGaA, Weinheim, Germany, 2003.
  4. M. Lidar, N. Agmon-Levin, P. Langevitz, and Y. Shoenfeld, “Silicone and scleroderma revisited,” Lupus, vol. 21, no. 2, pp. 121–127, 2012. View at Publisher · View at Google Scholar
  5. B. W. Case, J. L. Abraham, G. Meeker, F. D. Pooley, and K. E. Pinkerton, “Applying definitions of 'asbestos' to environmental and 'low-dose' exposure levels and health effects, particularly malignant mesothelioma,” Journal of Toxicology and Environmental Health. Part B, vol. 14, no. 1–4, pp. 3–39, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Luus, “Asbestos: mining exposure, health effects and policy implications,” McGill Journal of Medicine, vol. 10, no. 2, pp. 121–126, 2007. View at Scopus
  7. V. C. Sanchez, J. R. Pietruska, N. R. Miselis, R. H. Hurt, and A. B. Kane, “Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos?” Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, vol. 1, no. 5, pp. 511–529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. E. Duncan, A. J. Ghio, L. A. Dailey et al., “Effect of size fractionation on the toxicity of amosite and libby amphibole asbestos,” Toxicological Sciences, vol. 118, no. 2, Article ID kfq281, pp. 420–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. E. Aust, P. M. Cook, and R. F. Dodson, “Morphological and chemical mechanisms of elongated mineral particle toxicities,” Journal of Toxicology and Environmental Health. Part B, vol. 14, no. 1–4, pp. 40–75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Bunderson-Schelvan, J. C. Pfau, R. Crouch, and A. Holian, “Nonpulmonary outcomes of asbestos exposure,” Journal of Toxicology and Environmental Health. Part B, vol. 14, no. 1–4, pp. 122–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. P. P. Simeonova and M. I. Luster, “Asbestosinduction of nuclear transcription factors and interleukin 8 gene regulation,” American Journal of Respiratory Cell and Molecular Biology, vol. 15, no. 6, pp. 787–795, 1996. View at Scopus
  12. D. E. Sullivan, M. Ferris, H. Nguyen, E. Abboud, and A. R. Brody, “TNF-α induces TGF-β1 expression in lung fibroblasts at the transcriptional level via AP-1 activation,” Journal of Cellular and Molecular Medicine, vol. 13, no. 8 B, pp. 1866–1876, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. S. Uppal, R. Raghupathy, S. J. Hayat, J. C. Longenecker, M. Abraham, and P. Rawoot, “Disease activity and cytokine production in mitogen-stimulated peripheral blood mononuclear cells from patients with rheumatoid arthritis,” Medical Principles and Practice, vol. 19, no. 1, pp. 33–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Ceccarelli, C. Perricone, M. Fabris et al., “Transforming growth factor-beta 869C/T and interleukin-6 -174G/C polymorphisms relate to the severity and progression of bone erosive damage detected by ultrasound in rheumatoid arthritis,” Arthritis Research & Therapy, vol. 13, no. 4, p. R111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Y. Song, M. Y. Kim, K. H. Kim et al., “Synovial fluid of patients with rheumatoid arthritis induces α-Smooth muscle actin in human adipose tissue-derived mesenchymal stem cells through a TGF-β1-dependent mechanism,” Experimental and Molecular Medicine, vol. 42, no. 8, pp. 565–573, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Dostert, V. Pétrilli, R. Van Bruggen, C. Steele, B. T. Mossman, and J. Tschopp, “Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica,” Science, vol. 320, no. 5876, pp. 674–677, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. I. Sidiropoulos, G. Goulielmos, G. K. Voloudakis, E. Petraki, and D. T. Boumpas, “Inflammasomes and rheumatic diseases: evolving concepts,” Annals of the Rheumatic Diseases, vol. 67, no. 10, pp. 1382–1389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Maeda, Y. Nishimura, H. Hayashi, et al., “Reduction of CXC chemokine receptor 3 in an in vitro model of continuous exposure to asbestos in a human T-cell line, MT-2,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 3, pp. 470–479, 2011. View at Publisher · View at Google Scholar
  19. M. Maeda, Y. Nishimura, H. Hayashi, et al., “Decreased CXCR3 expression in CD4+ T cells exposed to asbestos or derived from asbestos-exposed patients,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 4, pp. 795–803, 2011. View at Publisher · View at Google Scholar
  20. A. Shukla, K. M. Lounsbury, T. F. Barrett et al., “Asbestos-induced peribronchiolar cell proliferation and cytokine production are attenuated in lungs of protein kinase C-δ knockout mice,” American Journal of Pathology, vol. 170, no. 1, pp. 140–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Nishimura, Y. Miura, M. Maeda et al., “Impairment in cytotoxicity and expression of NK cell-activating receptors on human NK cells following exposure to asbestos fibers,” International Journal of Immunopathology and Pharmacology, vol. 22, no. 3, pp. 579–590, 2009. View at Scopus
  22. Y. Nishimura, M. Maeda, N. Kumagai, H. Hayashi, Y. Miura, and T. Otsuki, “Decrease in phosphorylation of ERK following decreased expression of NK cell-activating receptors in human NK cell line exposed to asbestos,” International Journal of Immunopathology and Pharmacology, vol. 22, no. 4, pp. 879–888, 2009. View at Scopus
  23. T. Aramaki, H. Ida, Y. Izumi et al., “A significantly impaired natural killer cell activity due to a low activity on a per-cell basis in rheumatoid arthritis,” Modern Rheumatology, vol. 19, no. 3, pp. 245–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. D. W. Kamp, V. Panduri, S. A. Weitzman, and N. Chandel, “Asbestos-induced alveolar epithelial cell apoptosis: role of mitochondrial dysfunction caused by iron-derived free radicals,” Molecular and Cellular Biochemistry, vol. 234-235, pp. 153–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Unfried, C. Schürkes, and J. Abel, “Distinct spectrum of mutations induced by crocidolite asbestos: clue for 8-hydroxydeoxyguanosine-dependent mutagenesis in vivo,” Cancer Research, vol. 62, no. 1, pp. 99–104, 2002. View at Scopus
  26. A. Xu, H. Zhou, D. Z. Yu, and T. K. Hei, “Mechanisms of the genotoxicity of crocidolite asbestos in mammalian cells: implication from mutation patterns induced by reactive oxygen species,” Environmental Health Perspectives, vol. 110, no. 10, pp. 1003–1008, 2002. View at Scopus
  27. D. C. Phillips, H. K. I. Dias, G. D. Kitas, and H. R. Griffiths, “Aberrant reactive oxygen and nitrogen species generation in rheumatoid arthritis (RA): causes and consequences for immune function, cell survival, and therapeutic intervention,” Antioxidants and Redox Signaling, vol. 12, no. 6, pp. 743–785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C. W. Noonan, J. C. Pfau, T. C. Larson, and M. R. Spence, “Nested case-control study of autoimmune disease in an asbestos-exposed population,” Environmental Health Perspectives, vol. 114, no. 8, pp. 1243–1247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. C. Pfau, J. J. Sentissi, G. Weller, and E. A. Putnam, “Assessment of autoimmune responses associated with asbestos exposure in Libby, Montana, USA,” Environmental Health Perspectives, vol. 113, no. 1, pp. 25–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. A. R. Olsson, T. Skogh, O. Axelson, and G. Wingren, “Occupations and exposures in the work environment as determinants for rheumatoid arthritis,” Occupational and Environmental Medicine, vol. 61, no. 3, pp. 233–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. K. D. Salazar, C. B. Copeland, and R. W. Luebke, “Effects of Libby amphibole asbestos exposure on two models of arthritis in the Lewis rat,” Journal of Toxicology and Environmental Health. Part A, vol. 75, no. 6, pp. 351–365, 2012.
  32. J. C. Pfau, J. J. Sentissi, S. Li, L. Calderon-Garcidueńas, J. M. Brown, and D. J. Blake, “Asbestos-induced autoimmunity in C57Bl/6 mice,” Journal of Immunotoxicology, vol. 5, no. 2, pp. 129–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Pfau, S. Li, S. Holland, and J. J. Sentissi, “Alteration of fibroblast phenotype by asbestos-induced autoantibodies,” Journal of Immunotoxicology, vol. 8, no. 2, pp. 159–169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. R. F. Hamilton, S. A. Thakur, and A. Holian, “Silica binding and toxicity in alveolar macrophages,” Free Radical Biology and Medicine, vol. 44, no. 7, pp. 1246–1258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. K. D. Linch, W. E. Miller, R. B. Althouse, D. W. Groce, and J. M. Hale, “Surveillance of respirable crystalline silica dust using OSHA compliance data (1979–1995),” American Journal of Industrial Medicine, vol. 34, no. 6, pp. 547–558, 1998.
  36. W. Chen, Y. Liu, H. Wang, et al., “Long-term exposure to silica dust and risk of total and cause-specific mortality in chinese workers: a cohort study,” PLoS Medicine, vol. 9, no. 4, Article ID e1001206, 2012.
  37. R. Sellamuthu, C. Umbright, J. R. Roberts et al., “Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats,” Journal of Applied Toxicology. In press. View at Publisher · View at Google Scholar
  38. T. N. Perkins, A. Shukla, P. M. Peeters et al., “Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells,” Particle and Fibre Toxicology, vol. 9, article 6, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. D. W. Porter, L. L. Millecchia, P. Willard et al., “Nitric oxide and reactive oxygen species production causes progressive damage in rats after cessation of silica inhalation,” Toxicological Sciences, vol. 90, no. 1, pp. 188–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. H. M. Shen, Z. Zhang, Q. F. Zhang, and C. N. Ong, “Reactive oxygen species and caspase activation mediate silica-induced apoptosis in alveolar macrophages,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 280, no. 1, pp. L10–L17, 2001. View at Scopus
  41. Q. Ke, J. Li, J. Ding et al., “Essential role of ROS-mediated NFAT activation in TNF-α induction by crystalline silica exposure,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 291, no. 2, pp. L257–L264, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Premasekharan, K. Nguyen, J. Contreras, V. Ramon, V. J. Leppert, and H. J. Forman, “Iron-mediated lipid peroxidation and lipid raft disruption in low-dose silica-induced macrophage cytokine production,” Free Radical Biology and Medicine, vol. 51, no. 6, pp. 1184–1194, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Kuroda, K. J. Ishii, S. Uematsu et al., “Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms,” Immunity, vol. 34, no. 4, pp. 514–526, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Caplan, “Certain unusual radiological appearances in the chest of coal-miners suffering from rheumatoid arthritis,” Thorax, vol. 8, no. 1, pp. 29–37, 1953. View at Scopus
  45. J. Schreiber, D. Koschel, J. Kekow, N. Waldburg, A. Goette, and R. Merget, “Rheumatoid pneumoconiosis (Caplan's syndrome),” European Journal of Internal Medicine, vol. 21, no. 3, pp. 168–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Caplan, R. B. Payne, and J. L. Withey, “A broader concept of Caplan's syndrome related to rheumatoid factors,” Thorax, vol. 17, pp. 205–212, 1962. View at Scopus
  47. A. Makol, M. J. Reilly, and K. D. Rosenman, “Prevalence of connective tissue disease in silicosis (1985–2006)—a report from the state of michigan surveillance system for silicosis,” American Journal of Industrial Medicine, vol. 54, no. 4, pp. 255–262, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Slimani, A. Ben Ammar, and A. Ladjouze-Rezig, “Connective tissue diseases after heavy exposure to silica: a report of nine cases in stonemasons,” Clinical Rheumatology, vol. 29, no. 5, pp. 531–533, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Stolt, A. Yahya, C. Bengtsson et al., “Silica exposure among male current smokers is associated with a high risk of developing ACPA-positive rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 6, pp. 1072–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. O. Aminian, S. Sharifian, R. Mehrdad, K. Haghighi, and M. Mazaheri, “Antinuclear antibody and rheumatoid factor in Silica-Exposed workers,” Arhiv za Higijenu Rada i Toksikologiju, vol. 60, no. 2, pp. 185–190, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Stolt, H. Källberg, I. Lundberg, B. Sjögren, L. Klareskog, and L. Alfredsson, “Silica exposure is associated with increased risk of developing rheumatoid arthritis: results from the Swedish EIRA study,” Annals of the Rheumatic Diseases, vol. 64, no. 4, pp. 582–586, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. K. B. Mulloy, “Silica exposure and systemic vasculitis,” Environmental Health Perspectives, vol. 111, no. 16, pp. 1933–1938, 2003. View at Scopus
  53. L. Astudillo, L. Sailler, M. Ecoiffier, J. Giron, B. Couret, and E. Arlet-Suau, “Exposure to silica and primary Sjögren's syndrome in a dental technician,” Rheumatology, vol. 42, no. 10, pp. 1268–1269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. D. Markovits, D. Schapira, A. Wiener, and A. M. Nahir, “Silica-related rheumatoid arthritis without lung involvement,” Clinical Rheumatology, vol. 22, no. 1, pp. 53–55, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. G. M. Calvert, F. L. Rice, J. M. Boiano, J. W. Sheehy, and W. T. Sanderson, “Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states of the United States,” Occupational and Environmental Medicine, vol. 60, no. 2, pp. 122–129, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Iannello, M. Camuto, S. Cantarella et al., “Rheumatoid syndrome associated with lung interstitial disorder in a dental technician exposed to ceramic silica dust. A case report and critical literature review,” Clinical Rheumatology, vol. 21, no. 1, pp. 76–81, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. L. T. L. Costallat, E. M. De Capitani, and L. Zambon, “Pulmonary silicosis and systemic lupus erythematosus in men: a report of two cases,” Joint Bone Spine, vol. 69, no. 1, pp. 68–71, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Steenland, W. Sanderson, and G. M. Calvert, “Kidney disease and arthritis in a cohort study of workers exposed to silica,” Epidemiology, vol. 12, no. 4, pp. 405–412, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Stratta, A. Messuerotti, C. Canavese et al., “The role of metals in autoimmune vasculitis: epidemiological and pathogenic study,” Science of the Total Environment, vol. 270, no. 1–3, pp. 179–190, 2001. View at Scopus
  60. S. L. Hogan, K. K. Satterly, M. A. Dooley, P. H. Nachman, J. C. Jennette, and R. J. Falk, “Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and Lupus nephritis,” Journal of the American Society of Nephrology, vol. 12, no. 1, pp. 134–142, 2001. View at Scopus
  61. V. Rafnsson, O. Ingimarsson, I. Hjalmarsson, and H. Gunnarsdottir, “Association between exposure to crystalline silica and risk of sarcoidosis,” Occupational and Environmental Medicine, vol. 55, no. 10, pp. 657–660, 1998. View at Scopus
  62. T. O'Hanlon, B. Koneru, E. Bayat et al., “Immunogenetic differences between caucasian women with and those without silicone implants in whom myositis develops,” Arthritis and Rheumatism, vol. 50, no. 11, pp. 3646–3650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. M. L. Cuéllar, E. Scopelitis, S. A. Tenenbaum et al., “Serum antinuclear antibodies in women with silicone breast implants,” Journal of Rheumatology, vol. 22, no. 2, pp. 236–240, 1995. View at Scopus
  64. L. J. Jara, G. Medina, E. Gómez-Bañuelos, M. A. Saavedra, and O. Vera-Lastra, “Still's disease, lupus-like syndrome, and silicone breast implants. A case of ‘ASIA’ (Shoenfeld's syndrome),” Lupus, vol. 21, no. 2, pp. 140–145, 2012. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Gaubitz, C. Jackisch, W. Domschke, W. Heindel, and B. Pfleiderer, “Silicone breast implants: correlation between implant ruptures, magnetic resonance spectroscopically estimated silicone presence in the liver, antibody status and clinical symptoms,” Rheumatology, vol. 41, no. 2, pp. 129–135, 2002. View at Scopus
  66. E. C. Janowsky, L. L. Kupper, and B. S. Hulka, “Meta-analyses of the relation between silicone breast implants and the risk of connective-tissue diseases,” New England Journal of Medicine, vol. 342, no. 11, pp. 781–790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. J. M. Brown, A. J. Archer, J. C. Pfau, and A. Holian, “Silica accelerated systemic autoimmune disease in lupus-prone New Zealand mixed mice,” Clinical and Experimental Immunology, vol. 131, no. 3, pp. 415–421, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. J. C. Pfau, J. M. Brown, and A. Holian, “Silica-exposed mice generate autoantibodies to apoptotic cells,” Toxicology, vol. 195, no. 2-3, pp. 167–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. J. M. Brown, C. M. Schwanke, M. A. Pershouse, J. C. Pfau, and A. Holian, “Effects of rottlerin on silica-exacerbated systemic autoimmune disease in New Zealand mixed mice,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 289, no. 6, pp. L990–L998, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. J. M. Brown, J. C. Pfau, and A. Holian, “Immunoglobulin and lymphocyte responses following silica exposure in new zealand mixed mice,” Inhalation Toxicology, vol. 16, no. 3, pp. 133–139, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. M. Al-Mogairen, A. S. Al-Arfaj, S. A. Meo, A. Al-Hammad, and M. O. Gad El Rab, “Induction of autoimmunity in Brown Norway rats by oral and parenteral administration of sodium silicate,” Lupus, vol. 18, no. 5, pp. 413–417, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. M. C. Rocha, L. M. B. Santos, E. Bagatin et al., “Genetic polymorphisms and surface expression of CTLA-4 and PD-1 on T cells of silica-exposed workers,” International Journal of Hygiene and Environmental Health, vol. 215, no. 6, pp. 562–569, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. F. Flores-Borja, E. C. Jury, C. Mauri, and M. R. Ehrenstein, “Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19396–19401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Otsuki, H. Sakaguchi, A. Tomokuni et al., “Soluble Fas mRNA is dominantly expressed in cases with silicosis,” Immunology, vol. 94, no. 2, pp. 258–262, 1998. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Otsuki, H. Sakaguchi, A. Tomokuni et al., “Detection of alternatively spliced variant messages of Fas gene and mutational screening of Fas and Fas ligand coding regions in peripheral blood mononuclear cells derived from silicosis patients,” Immunology Letters, vol. 72, no. 2, pp. 137–143, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Otsuki, A. Tomokuni, H. Sakaguchi et al., “Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients,” Clinical and Experimental Immunology, vol. 119, no. 2, pp. 323–327, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Ateş, G. Kinikli, M. Turgay, and M. Duman, “The levels of serum-soluble Fas in patients with rheumatoid arthritis and systemic sclerosis,” Clinical Rheumatology, vol. 23, no. 5, pp. 421–425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. M.-H. Chen, W.-S. Chen, C.-Y. Tsai, H.-T. Liao, C.-H. Chen, and C.-T. Chou, “Overexpression of decoy receptor 3 in synovial tissues of inflammatory arthritis,” Clinical and Experimental Rheumatology, vol. 30, no. 2, pp. 171–177, 2012. View at Scopus
  79. A. Takata-Tomokuni, A. Ueki, M. Shiwa et al., “Detection, epitope-mapping and function of anti-Fas autoantibody in patients with silicosis,” Immunology, vol. 116, no. 1, pp. 21–29, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Ueki, Y. Isozaki, A. Tomokuni et al., “Autoantibodies detectable in the sera of silicosis patients. The relationship between the anti-topoisomerase I antibody response and HLA-DQB1 *0402 allele in Japanese silicosis patients,” Science of the Total Environment, vol. 270, no. 1–3, pp. 141–148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Ueki, Y. Isozaki, and M. Kusaka, “Anti-caspase-8 autoantibody response in silicosis patients is associated with HLA-DRB1, DQB1 and DPB1 alleles,” Journal of Occupational Health, vol. 47, no. 1, pp. 61–67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Ueki, M. Kohda, T. Nobutoh et al., “Antidesmoglein autoantibodies in silicosis patients with no bullous diseases,” Dermatology, vol. 202, no. 1, pp. 16–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Hayashi, Y. Miura, M. Maeda et al., “Reductive alteration of the regulatory function of the CD4(+)CD25(+) T cell fraction in silicosis patients,” International Journal of Immunopathology and Pharmacology, vol. 23, no. 4, pp. 1099–1109, 2010. View at Scopus
  84. W. Wang, S. Shao, Z. Jiao, M. Guo, H. Xu, and S. Wang, “The Th17/Treg imbalance and cytokine environment in peripheral blood of patients with rheumatoid arthritis,” Rheumatology International, vol. 32, no. 4, pp. 1–887, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. Z. Huang, J. Sun, L. Shi, and D. Zhang, “Injury on blood systems caused by silicon dioxide nanoparticles,” Advanced Materials Research, vol. 335-336, pp. 387–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Lee, H.-S. Yun, and S.-H. Kim, “The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis,” Biomaterials, vol. 32, no. 35, pp. 9434–9443, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. M. V. D. Z. Park, I. Lynch, S. Ramírez-García et al., “In vitro evaluation of cytotoxic and inflammatory properties of silica nanoparticles of different sizes in murine RAW 264.7 macrophages,” Journal of Nanoparticle Research, vol. 13, no. 12, pp. 6775–6787, 2011. View at Publisher · View at Google Scholar · View at Scopus
  88. V. Wilhelmi, U. Fischer, D. van Berlo, K. Schulze-Osthoff, R. P. F. Schins, and C. Albrecht, “Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7 macrophages: facts and artefacts,” Toxicology in Vitro, vol. 26, no. 2, pp. 323–334, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. B. M. Mohamed, N. K. Verma, A. M. Davies, et al., “Citrullination of proteins: a common post-translational modification pathway induced by different nanoparticles in vitro and in vivo,” Nanomedicine, vol. 7, no. 8, pp. 1181–1195, 2012.
  90. A. Suzuki, R. Yamada, and K. Yamamoto, “Citrullination by peptidylarginine deiminase in rheumatoid arthritis,” Annals of the New York Academy of Sciences, vol. 1108, pp. 323–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. T. B. Niewold, M. J. Harrison, and S. A. Paget, “Anti-CCP antibody testing as a diagnostic and prognostic tool in rheumatoid arthritis,” QJM, vol. 100, no. 4, pp. 193–201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Winter, H.-D. Beer, V. Hornung, U. Kärmer, R. P. F. Schins, and I. Förster, “Activation of the inflammasome by amorphous silica and TiO2 nanoparticles in murine dendritic cells,” Nanotoxicology, vol. 5, no. 3, pp. 326–340, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. S. D. Hajdu, N. Agmon-Levin, and Y. Shoenfeld, “Silicone and autoimmunity,” European Journal of Clinical Investigation, vol. 41, no. 2, pp. 203–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. C. J. Schaefer and P. H. Wooley, “The influence of silicone implantation on murine lupus in MRL lpr/lpr mice,” Journal of Rheumatology, vol. 26, no. 10, pp. 2215–2221, 1999. View at Scopus
  95. C. J. Schaefer, W. D. Lawrence, and P. H. Wooley, “Influence of long term silicone implantation on type II collagen induced arthritis in mice,” Annals of the Rheumatic Diseases, vol. 58, no. 8, pp. 503–509, 1999. View at Scopus
  96. A. H. McDonald, K. Weir, M. Schneider, L. Gudenkauf, and J. R. Sanger, “Silicone gel enhances the development of autoimmune disease in New Zealand black mice but fails to induce it in BALB/cAnPt mice,” Clinical Immunology and Immunopathology, vol. 87, no. 3, pp. 248–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  97. I.-M. Lee, N. R. Cook, N. A. Shadick, E. Pereira, and J. E. Buring, “Prospective cohort study of breast implants and the risk of connective-tissue diseases,” International Journal of Epidemiology, vol. 40, no. 1, Article ID dyq164, pp. 230–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Lipworth, L. R. Holmich, and J. K. McLaughlin, “Silicone breast implants and connective tissue disease: no association,” Seminars in Immunopathology, vol. 33, no. 3, pp. 287–294, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. J. O. Naim and R. J. Lanzafame, “The adjuvant effect of silicone-gel on antibody formation in rats,” Immunological Investigations, vol. 22, no. 2, pp. 151–161, 1993. View at Scopus
  100. M. Caldeira and A. C. Ferreira, “Siliconosis: autoimmune/inflammatory syndrome induced by adjuvants (ASIA),” The Israel Medical Association Journal, vol. 14, no. 2, pp. 137–138, 2012.
  101. Y. Shoenfeld and N. Agmon-Levin, “‘ASIA’—Autoimmune/inflammatory syndrome induced by adjuvants,” Journal of Autoimmunity, vol. 36, no. 1, pp. 4–8, 2011. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Kivity, M. Katz, P. Langevitz, I. Eshed, D. Olchovski, and A. Barzilai, “Autoimmune Syndrome Induced by Adjuvants (ASIA) in the Middle East: morphea following silicone implantation,” Lupus, vol. 21, no. 2, pp. 136–139, 2012. View at Publisher · View at Google Scholar · View at Scopus