About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2012 (2012), Article ID 764621, 14 pages
http://dx.doi.org/10.1155/2012/764621
Review Article

A Review of Translational Animal Models for Knee Osteoarthritis

1School of Medicine, University of Missouri, Columbia, MO, USA
2Missouri Orthopaedic Institute, 1100 Virginia Avenue, DC 953.00, Columbia, MO 65212, USA
3Comparative Orthopaedic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA

Received 10 August 2012; Revised 8 November 2012; Accepted 26 November 2012

Academic Editor: Paola Migliorini

Copyright © 2012 Martin H. Gregory et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Lawrence, D. T. Felson, C. G. Helmick et al., “Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II,” Arthritis & Rheumatism, vol. 58, no. 1, pp. 26–35, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Losina, T. S. Thornhill, B. N. Rome, et al., “The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic,” The Journal of Bone & Joint Surgery A, vol. 94, no. 3, pp. 201–207, 2012. View at Publisher · View at Google Scholar
  3. A. Winterpacht, M. Hilbert, U. Sehwarze, S. Mundlos, J. Spranger, and B. U. Zabel, “Kniest and stickler dysplasia phenotypes caused by collagen type II gene (COL2A1) defect,” Nature Genetics, vol. 3, no. 4, pp. 323–326, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Nakata, K. Ono, J. I. Miyazaki et al., “Osteoarthritis associated with mild chondrodysplasia in transgenic mice expressing α1(IX) collagen chains with a central deletion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 7, pp. 2870–2874, 1993. View at Scopus
  5. R. Fässler, P. N. J. Schnegelsberg, J. Dausman et al., “Mice lacking α1(IX) collagen develop noninflammatory degenerative joint disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 11, pp. 5070–5074, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. H. J. Helminen, K. Kiraly, A. Pelttari et al., “An inbred line of transgenic mice expressing an internally deleted gene for type II procollagen (COL2A1): young mice have a variable phenotype of a chondrodysplasia and older mice have osteoarthritic changes in joints,” The Journal of Clinical Investigation, vol. 92, no. 2, pp. 582–595, 1993. View at Scopus
  7. M. Daans, F. P. Luyten, and R. J. U. Lories, “GDF5 deficiency in mice is associated with instability-driven joint damage, gait and subchondral bone changes,” Annals of the Rheumatic Diseases, vol. 70, no. 1, pp. 208–213, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. V. M. Baragi, G. Becher, A. M. Bendele et al., “A new class of potent matrix metalloproteinase 13 inhibitors for potential treatment of osteoarthritis: evidence of histologic and clinical efficacy without musculoskeletal toxicity in rat models,” Arthritis & Rheumatism, vol. 60, no. 7, pp. 2008–2018, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. E. Bove, K. D. Laemont, R. M. Brooker et al., “Surgically induced osteoarthritis in the rat results in the development of both osteoarthritis-like joint pain and secondary hyperalgesia,” Osteoarthritis and Cartilage, vol. 14, no. 10, pp. 1041–1048, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Fernihough, C. Gentry, M. Malcangio et al., “Pain related behaviour in two models of osteoarthritis in the rat knee,” Pain, vol. 112, no. 1-2, pp. 83–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. A. Abbud Lozoya and J. B. Kouri Flores, “A novel rat osteoarthrosis model to assess apoptosis and matrix degradation,” Pathology, vol. 196, no. 11, pp. 729–745, 2000. View at Scopus
  12. T. Hayami, M. Pickarski, G. A. Wesolowski et al., “The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model,” Arthritis & Rheumatism, vol. 50, no. 4, pp. 1193–1206, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Hayami, M. Pickarski, Y. Zhuo, G. A. Wesolowski, G. A. Rodan, and L. T. Duong, “Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis,” Bone, vol. 38, no. 2, pp. 234–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Williams, D. L. Felten, R. G. Peterson, and B. L. O'Connor, “Effect of surgically induced instability on rat knee articular cartilage,” Journal of Anatomy, vol. 134, part 1, pp. 103–109, 1982. View at Scopus
  15. M. Yorimitsu, K. Nishida, A. Shimizu et al., “Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced osteoarthritis in rat knee joints,” Osteoarthritis and Cartilage, vol. 16, no. 7, pp. 764–771, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. J. Janusz, E. B. Hookfin, S. A. Heitmeyer et al., “Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors,” Osteoarthritis and Cartilage, vol. 9, no. 8, pp. 751–760, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. R. E. Guzman, M. G. Evans, S. Bove, B. Morenko, and K. Kilgore, “Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis,” Toxicologic Pathology, vol. 31, no. 6, pp. 619–624, 2003. View at Scopus
  18. M. Bouchgua, K. Alexander, M. André d'Anjou et al., “Use of routine clinical multimodality imaging in a rabbit model of osteoarthritis—part I,” Osteoarthritis and Cartilage, vol. 17, no. 2, pp. 188–196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Díaz-Gallego, J. G. Prieto, P. Coronel, L. E. Gamazo, M. Gimeno, and A. I. Alvarez, “Apoptosis and nitric oxide in an experimental model of osteoarthritis in rabbit after hyaluronic acid treatment,” Journal of Orthopaedic Research, vol. 23, no. 6, pp. 1370–1376, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. S. Hulmes, M. E. Marsden, R. K. Strachan, R. E. Harvey, N. Mclnnes, and D. L. Gardner, “Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content,” Osteoarthritis and Cartilage, vol. 12, no. 3, pp. 232–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Muehleman, J. Green, J. M. Williams, K. E. Kuettner, E. M. Thonar, and D. R. Sumner, “The effect of bone remodeling inhibition by zoledronic acid in an animal model of cartilage matrix damage,” Osteoarthritis and Cartilage, vol. 10, no. 3, pp. 226–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Kikuchi, T. Sakuta, and T. Yamaguchi, “Intra-articular injection of collagenase induces experimental osteoarthritis in mature rabbits,” Osteoarthritis and Cartilage, vol. 6, no. 3, pp. 177–186, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. E. de Bri, W. Lei, O. Svensson, M. Chowdhury, S. A. Moak, and R. A. Greenwald, “Effect of an inhibitor of matrix metalloproteinases on spontaneous osteoarthritis in guinea pigs,” Advances in Dental Research, vol. 12, no. 2, pp. 82–85, 1998. View at Scopus
  24. P. J. Watson, T. A. Carpenter, L. D. Hall, and J. A. Tyler, “MR protocols for imaging the guinea pig knee,” Magnetic Resonance Imaging, vol. 15, no. 8, pp. 957–970, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. J. J. Tessier, J. Bowyer, N. J. Brownrigg et al., “Characterisation of the guinea pig model of osteoarthritis by in vivo three-dimensional magnetic resonance imaging,” Osteoarthritis and Cartilage, vol. 11, no. 12, pp. 845–853, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Schuelert, M. P. Johnson, J. L. Oskins, K. Jassal, M. G. Chambers, and J. J. McDougall, “Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis,” Pain, vol. 152, no. 5, pp. 975–981, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Bendele and J. F. Hulman, “Spontaneous cartilage degeneration in guinea pigs,” Arthritis & Rheumatism, vol. 31, no. 4, pp. 561–565, 1988. View at Scopus
  28. J. L. Huebner, M. A. Hanes, B. Beekman, J. M. TeKoppele, and V. B. Kraus, “A comparative analysis of bone and cartilage metabolism in two strains of guinea-pig with varying degrees of naturally occurring osteoarthritis,” Osteoarthritis and Cartilage, vol. 10, no. 10, pp. 758–767, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. K. S. Santangelo, E. M. Pieczarka, G. J. Nuovo, S. E. Weisbrode, and A. L. Bertone, “Temporal expression and tissue distribution of interleukin-1β in two strains of guinea pigs with varying propensity for spontaneous knee osteoarthritis,” Osteoarthritis and Cartilage, vol. 19, no. 4, pp. 439–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Wang, L. Arsenault, and E. Hunziker, “Stereologic analysis of tibial-plateau cartilage and femoral cancellous bone in guinea pigs with spontaneous osteoarthritis,” Clinical Orthopaedics and Related Research, vol. 469, no. 10, pp. 2796–2805, 2011. View at Publisher · View at Google Scholar
  31. R. D. Young, A. Vaughan-Thomas, R. J. Wardale, and V. C. Duance, “Type II collagen deposition in cruciate ligament precedes osteoarthritis in the guinea pig knee,” Osteoarthritis and Cartilage, vol. 10, no. 5, pp. 420–428, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. D. Kapadia, A. M. Badger, J. M. Levin et al., “Meniscal ossification in spontaneous osteoarthritis in the guinea-pig,” Osteoarthritis and Cartilage, vol. 8, no. 5, pp. 374–377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Thomsen, T. S. Straarup, C. C. Danielsen, et al., “Relationship between articular cartilage damage and subchondral bone properties and meniscal ossification in the Dunkin Hartley guinea pig model of osteoarthritis,” Scandinavian Journal of Rheumatology, vol. 40, no. 5, pp. 391–399., 2011. View at Publisher · View at Google Scholar
  34. L. Wei, O. Svensson, and A. Hjerpe, “Correlation of morphologic and biochemical changes in the natural history of spontaneous osteoarthrosis in guinea pigs,” Arthritis & Rheumatism, vol. 40, no. 11, pp. 2075–2083, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Han, A. A. Cole, Y. Shen, T. Brodie, and J. M. Williams, “Early alterations in the collagen meshwork and lesions in the ankles are associated with spontaneous osteoarthritis in guinea-pigs,” Osteoarthritis and Cartilage, vol. 10, no. 10, pp. 778–784, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. M. C. Fenty, G. R. Dodge, V. B. Kassey, et al., “Quantitative cartilage degeneration associated with spontaneous osteoarthritis in a guinea pig model,” Journal of Magnetic Resonance Imaging, vol. 35, no. 4, pp. 891–898, 2012. View at Publisher · View at Google Scholar
  37. J. A. Tyler, P. J. Watson, H. L. Koh, N. J. Herrod, M. Robson, and L. D. Hall, “Detection and monitoring of progressive degeneration of osteoarthritic cartilage by MRI,” Acta Orthopaedica Scandinavica, vol. 266, pp. 130–138, 1995. View at Scopus
  38. P. J. Watson, L. D. Hall, A. Malcolm, and J. A. Tyler, “Degenerative joint disease in the guinea pig: use of magnetic resonance imaging to monitor progression of bone pathology,” Arthritis & Rheumatism, vol. 39, no. 8, pp. 1327–1337, 1996. View at Scopus
  39. S. Taniguchi, J. Ryu, M. Seki, et al., “Long-term oral administration of glucosamine or chondroitin sulfate reduces destruction of cartilage and up-regulation of MMP-3 mRNA in a model of spontaneous osteoarthritis in Hartley guinea pigs,” Journal of Orthopaedic Research, vol. 30, no. 5, pp. 673–678, 2012. View at Publisher · View at Google Scholar
  40. K. S. Santangelo and A. L. Bertone, “Effective reduction of the interleukin-1β transcript in osteoarthritis-prone guinea pig chondrocytes via short hairpin RNA mediated RNA interference influences gene expression of mediators implicated in disease pathogenesis,” Osteoarthritis and Cartilage, vol. 19, no. 12, pp. 1449–1457, 2011. View at Publisher · View at Google Scholar
  41. T. Ikeda, T. Kubo, Y. Arai et al., “Adenovirus mediated gene delivery to the joints of guinea pigs,” The Journal of Rheumatology, vol. 25, no. 9, pp. 1666–1673, 1998. View at Scopus
  42. M. Sato, K. Uchida, H. Nakajima, et al., “Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis,” Arthritis Research & Therapy, vol. 14, no. 1, article R31, 2012. View at Publisher · View at Google Scholar
  43. A. M. Bendele, “Progressive chronic osteoarthritis in femorotibial joints of partial medial meniscectomized guinea pigs,” Veterinary Pathology, vol. 24, no. 5, pp. 444–448, 1987. View at Scopus
  44. J. M. Williams and K. D. Brandt, “Benoxaprofen reduces osteophyte formation and fibrillation after articular cartilage injury,” The Journal of Rheumatology, vol. 12, no. 1, pp. 27–32, 1985. View at Scopus
  45. S. Kopp, C. Mejersjo, and E. Clemensson, “Induction of osteoarthrosis in the guinea pig knee by papain,” Oral Surgery, Oral Medicine and Oral Pathology, vol. 55, no. 3, pp. 259–266, 1983. View at Scopus
  46. B. C. Garner, A. M. Stoker, K. Kuroki, et al., “Using animal models in osteoarthritis biomarker research,” The Journal of Knee Surgery, vol. 24, no. 4, pp. 251–264, 2011. View at Publisher · View at Google Scholar
  47. M. J. Pond and G. Nuki, “Experimentally-induced osteoarthritis in the dog,” Annals of the Rheumatic Diseases, vol. 32, no. 4, pp. 387–388, 1973. View at Scopus
  48. K. Kuroki, C. R. Cook, and J. L. Cook, “Subchondral bone changes in three different canine models of osteoarthritis,” Osteoarthritis and Cartilage, vol. 19, no. 9, pp. 1142–1149, 2011. View at Publisher · View at Google Scholar
  49. G. N. Smith, E. A. Mickler, M. E. Albrecht, S. L. Myers, and K. D. Brandt, “Severity of medical meniscus damage in the canine knee after anterior cruciate ligament transection,” Osteoarthritis and Cartilage, vol. 10, no. 4, pp. 321–326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. S. L. Myers, K. D. Brandt, B. L. O'Connor, D. M. Visco, and M. E. Albrecht, “Synovitis and osteoarthritic changes in canine articular cartilage after anterior cruciate ligament transection: effect of surgical hemostasis,” Arthritis & Rheumatism, vol. 33, no. 9, pp. 1406–1415, 1990. View at Scopus
  51. J. A. Vilensky, B. L. O'Connor, K. D. Brandt, E. A. Dunn, P. I. Rogers, and C. A. DeLong, “Serial kinematic analysis of the unstable knee after transection of the anterior cruciate ligament: temporal and angular changes in a canine model of osteoarthritis,” Journal of Orthopaedic Research, vol. 12, no. 2, pp. 229–237, 1994. View at Scopus
  52. W. Liu, N. Burton-Wurster, T. T. Glant et al., “Spontaneous and experimental osteoarthritis in dog: similarities and differences in proteoglycan levels,” Journal of Orthopaedic Research, vol. 21, no. 4, pp. 730–737, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. D. V. Jovanovic, J. C. Fernandes, J. Martel-Pelletier, et al., “In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: suppression of collagenase 1 and interleukin-1β synthesis,” Arthritis & Rheumatism, vol. 44, no. 10, pp. 2320–2330, 2001.
  54. J.-P. Pelletier, C. Boileau, M. Boily et al., “The protective effect of licofelone on experimental osteoarthritis is correlated with the downregulation of gene expression and protein synthesis of several major cartilage catabolic factors: MMP-13, cathepsin K and aggrecanases,” Arthritis Research & Therapy, vol. 7, no. 5, pp. R1091–R1102, 2005. View at Scopus
  55. J.-P. Pelletier, C. Boileau, J. Brunet et al., “The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K,” Bone, vol. 34, no. 3, pp. 527–538, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Moreau, C. Boileau, J. Martel-Pelletier, J. Brunet, S. Laufer, and J. P. Pelletier, “Licofelone reduces progression of structural changes in a canine model of osteoarthritis under curative conditions: effect on protease expression and activity,” The Journal of Rheumatology, vol. 33, no. 6, pp. 1176–1183, 2006. View at Scopus
  57. J. K. Luther, C. R. Cook, and J. L. Cook, “Meniscal release in cruciate ligament intact stifles causes lameness and medial compartment cartilage pathology in dogs 12 weeks postoperatively,” Veterinary Surgery, vol. 38, no. 4, pp. 520–529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. L. N. Frost-Christensen, S. C. Mastbergen, M. E. Vianen et al., “Degeneration, inflammation, regeneration, and pain/disability in dogs following destabilization or articular cartilage grooving of the stifle joint,” Osteoarthritis and Cartilage, vol. 16, no. 11, pp. 1327–1335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. A. C. A. Marijnissen, P. M. van Roermund, J. M. TeKoppele, J. W. J. Bijlsma, and F. P. J. G. Lafeber, “The canine ‘groove’ model, compared with the ACLT model of osteoarthritis,” Osteoarthritis and Cartilage, vol. 10, no. 2, pp. 145–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. A. C. A. Marijnissen, P. M. van Roermund, N. Verzijl, J. M. Tekoppele, J. W. J. Bijlsma, and F. P. J. G. Lafeber, “Steady progression of osteoarthritic features in the canine groove model,” Osteoarthritis and Cartilage, vol. 10, no. 4, pp. 282–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. D. I. Bylski-Austrow, J. Malumed, T. Meade, and E. S. Grood, “Knee joint contact pressure decreases after chronic meniscectomy relative to the acutely meniscectomized joint: a mechanical study in the goat,” Journal of Orthopaedic Research, vol. 11, no. 6, pp. 796–804, 1993. View at Scopus
  62. P. Ghosh, J. Sutherland, C. Bellenger, R. Read, and A. Darvodelsky, “The influence of weight-bearing exercise on articular cartilage of meniscectomized joints. An experimental study in sheep,” Clinical Orthopaedics and Related Research, vol. 252, pp. 101–113, 1990. View at Scopus
  63. S. J. Armstrong, R. A. Read, P. Ghosh, and D. M. Wilson, “Moderate exercise exacerbates the osteoarthritic lesions produced in cartilage by meniscectomy: a morphological study,” Osteoarthritis and Cartilage, vol. 1, no. 2, pp. 89–96, 1993. View at Scopus
  64. J. E. Beveridge, N. G. Shrive, and C. B. Frank, “Meniscectomy causes significant in vivo kinematic changes and mechanically induced focal chondral lesions in a sheep model,” Journal of Orthopaedic Research, vol. 29, no. 9, pp. 1397–1405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. B. T. Kelly, H. G. Potter, X. H. Deng et al., “Meniscal allograft transplantation in the sheep knee,” The American Journal of Sports Medicine, vol. 34, no. 9, pp. 1464–1477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. Murphy, D. J. Fink, E. B. Hunziker, and F. P. Barry, “Stem cell therapy in a caprine model of osteoarthritis,” Arthritis & Rheumatism, vol. 48, no. 12, pp. 3464–3474, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. J. A. Auer, G. E. Fackelman, D. A. Gingerich, and A. W. Fetter, “Effect of hyaluronic acid in naturally occurring and experimentally induced osteoarthritis,” American Journal of Veterinary Research, vol. 41, no. 4, pp. 568–574, 1980. View at Scopus
  68. J. W. Foland, C. W. McIlwraith, G. W. Trotter, B. E. Powers, and C. H. Lamar, “Effect of betamethasone and exercise on equine carpal joints with osteochondral fragments,” Veterinary Surgery, vol. 23, no. 5, pp. 369–376, 1994. View at Scopus
  69. C. J. Bolam, M. B. Hurtig, A. Cruz, and B. J. E. McEwen, “Characterization of experimentally induced post-traumatic osteoarthritis in the medial femorotibial joint of horses,” American Journal of Veterinary Research, vol. 67, no. 3, pp. 433–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. D. D. Frisbie, F. Al-Sobayil, R. C. Billinghurst, C. E. Kawcak, and C. W. McIlwraith, “Changes in synovial fluid and serum biomarkers with exercise and early osteoarthritis in horses,” Osteoarthritis and Cartilage, vol. 16, no. 10, pp. 1196–1204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. D. D. Frisbie, C. E. Kawcak, G. W. Trotter, B. E. Powers, R. M. Walton, and C. W. McIlwraith, “Effects of triamcinolone acetonide on an in vivo equine osteochondral fragment exercise model,” Equine Veterinary Journal, vol. 29, no. 5, pp. 349–359, 1997. View at Scopus
  72. C. E. Kawcak, R. W. Norrdin, D. D. Frisbie, G. W. Trotter, and C. W. Mcilwraith, “Effects of osteochondral fragmentation and intra-articular triamcinolone acetonide treatment on subchondral bone in the equine carpus,” Equine Veterinary Journal, vol. 30, no. 1, pp. 66–71, 1998. View at Scopus
  73. D. D. Frisbie, S. C. Ghivizzani, P. D. Robbins, C. H. Evans, and C. W. McIlwraith, “Treatment of experimental equine osteoarthritis by in vivo delivery of the equine interleukin-1 receptor antagonist gene,” Gene Therapy, vol. 9, no. 1, pp. 12–20, 2002. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Aigner, J. L. Cook, N. Gerwin et al., “Histopathology atlas of animal model systems—overview of guiding principles,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S2–S6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. J. L. Cook, K. Kuroki, D. Visco, J. P. Pelletier, L. Schulz, and F. P. J. G. Lafeber, “The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the dog,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S66–S79, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. N. Gerwin, A. M. Bendele, S. Glasson, and C. S. Carlson, “The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the rat,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S24–S34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. S. S. Glasson, M. G. Chambers, W. B. van den Berg, and C. B. Little, “The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the mouse,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S17–S23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. V. B. Kraus, J. L. Huebner, J. DeGroot, and A. Bendele, “The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the guinea pig,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S35–S52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Laverty, C. A. Girard, J. M. Williams, E. B. Hunziker, and K. P. H. Pritzker, “The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the rabbit,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S53–S65, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. C. B. Little, M. M. Smith, M. A. Cake, R. A. Read, M. J. Murphy, and F. P. Barry, “The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in sheep and goats,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S80–S92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. C. W. McIlwraith, D. D. Frisbie, C. E. Kawcak, C. J. Fuller, M. Hurtig, and A. Cruz, “The OARSI histopathology initiative—recommendations for histological assessments of osteoarthritis in the horse,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S93–S105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. A. M. Bendele, “Animal models of osteoarthritis,” Journal of Musculoskeletal and Neuronal Interactions, vol. 1, no. 4, pp. 363–376, 2001.
  83. C. B. Little and M. M. Smith, “Animal models of osteoarthritis,” Current Rheumatology Reviews, vol. 4, no. 3, pp. 175–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Poole, S. Blake, M. Buschmann et al., “Recommendations for the use of preclinical models in the study and treatment of osteoarthritis,” Osteoarthritis and Cartilage, vol. 18, supplement 3, pp. S10–S16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Smale, A. Bendele, and W. E. Horton Jr., “Comparison of age-associated degeneration of articular cartilage in Wistar and Fischer 344 rats,” Laboratory Animal Science, vol. 45, no. 2, pp. 191–194, 1995. View at Scopus
  86. M. Tirgari and L. C. Vaughan, “Arthritis of the canine stifle joint,” Veterinary Record, vol. 96, no. 18, pp. 394–399, 1975. View at Scopus
  87. G. Nilsson and S. E. Olsson, “Radiologic and patho-anatomic changes in the distal joints and the phalanges of the standardbred horse,” Acta Veterinaria Scandinavica, vol. 44, pp. 1–57, 1973. View at Scopus
  88. D. T. Felson, Y. Zhang, M. T. Hannan et al., “The incidence and natural history of knee osteoarthritis in the elderly: the Framingham osteoarthritis study,” Arthritis & Rheumatism, vol. 38, no. 10, pp. 1500–1505, 1995. View at Publisher · View at Google Scholar · View at Scopus
  89. A. C. Gelber, M. C. Hochberg, L. A. Mead, N. Y. Wang, F. M. Wigley, and M. J. Klag, “Joint injury in young adults and risk for subsequent knee and hip osteoarthritis,” Annals of Internal Medicine, vol. 133, no. 5, pp. 321–328, 2000. View at Scopus
  90. R. G. Johnson, “Transection of the canine anterior cruciate ligament: a concise review of experience with this model of degenerative joint disease,” Experimental Pathology, vol. 30, no. 4, pp. 209–213, 1986. View at Scopus
  91. C. McDevitt, E. Gilbertson, and H. Muir, “An experimental model of osteoarthritis; early morphological and biochemical changes,” Journal of Bone & Joint Surgery B, vol. 59, no. 1, pp. 24–35, 1977. View at Scopus
  92. M. Libicher, M. Ivancic, V. Hoffmann, and W. Wenz, “Early changes in experimental osteoarthritis using the Pond-Nuki dog model: technical procedure and initial results of in vivo MR imaging,” European Radiology, vol. 15, no. 2, pp. 390–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. M.-A. D'Anjou, M. Moreau, É. Troncy et al., “Osteophytosis, subchondral bone sclerosis, joint effusion and soft tissue thickening in canine experimental stifle osteoarthritis: comparison between 1.5 T magnetic resonance imaging and computed radiography,” Veterinary Surgery, vol. 37, no. 2, pp. 166–177, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. S. C. Mastbergen, A. C. Marijnissen, M. E. Vianen, P. M. van Roermund, J. W. Bijlsma, and F. P. Lafeber, “The canine ‘groove’ model of osteoarthritis is more than simply the expression of surgically applied damage,” Osteoarthritis and Cartilage, vol. 14, no. 1, pp. 39–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. H. Sniekers, H. Weinans, S. M. Bierma-Zeinstra, J. P. T. M. van Leeuwen, and G. J. V. M. van Osch, “Animal models for osteoarthritis: the effect of ovariectomy and estrogen treatment—a systematic approach,” Osteoarthritis and Cartilage, vol. 16, no. 5, pp. 533–541, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. A. M. Bendele and J. F. Hulman, “Effects of body weight restriction on the development and progression of spontaneous osteoarthritis in guinea pigs,” Arthritis & Rheumatism, vol. 34, no. 9, pp. 1180–1184, 1991. View at Publisher · View at Google Scholar · View at Scopus
  97. M. M. Hyttinen, J. P. A. Arokoski, J. J. Parkkinen et al., “Age matters: collagen birefringence of superficial articular cartilage is increased in young guinea-pigs but decreased in older animals after identical physiological type of joint loading,” Osteoarthritis and Cartilage, vol. 9, no. 8, pp. 694–701, 2001. View at Publisher · View at Google Scholar · View at Scopus
  98. P. Krzeski, C. Buckland-Wright, G. Bálint et al., “Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study,” Arthritis Research & Therapy, vol. 9, no. 5, article R109, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. C. O. Bingham, J. C. Buckland-Wright, P. Garnero et al., “Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study,” Arthritis & Rheumatism, vol. 54, no. 11, pp. 3494–3507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. L. P. Yu, G. N. Smith, K. D. Brandt, S. L. Myers, B. L. O'Connor, and D. A. Brandt, “Reduction of the severity of canine osteoarthritis by prophylactic treatment with oral doxycycline,” Arthritis & Rheumatism, vol. 35, no. 10, pp. 1150–1159, 1992. View at Publisher · View at Google Scholar · View at Scopus
  101. F. Eckstein and W. Wirth, “Quantitative cartilage imaging in knee osteoarthritis,” Arthritis, vol. 2011, Article ID 475684, 19 pages, 2011. View at Publisher · View at Google Scholar
  102. F. W. Roemer, M. D. Crema, S. Trattnig, and A. Guermazi, “Advances in imaging of osteoarthritis and cartilage,” Radiology, vol. 260, no. 2, pp. 332–354, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. C. Boileau, J. Martel-Pelletier, F. Abram et al., “Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 7, pp. 926–932, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. J.-P. Raynauld, J. Martel-Pelletier, P. Bias et al., “Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI,” Annals of the Rheumatic Diseases, vol. 68, no. 6, pp. 938–947, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Wang, S. Hall, F. Hanna, et al., “Effects of Hylan G-F 20 supplementation on cartilage preservation detected by magnetic resonance imaging in osteoarthritis of the knee: a two-year single-blind clinical trial,” BMC Musculoskeletal Disorders, vol. 12, no. 1, article 195, 2011. View at Publisher · View at Google Scholar
  106. T. E. McAlindon, M. Nuite, N. Krishnan et al., “Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: a pilot randomized controlled trial,” Osteoarthritis and Cartilage, vol. 19, no. 4, pp. 399–405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. D. Laurent, E. O'Byrne, J. Wasvary, and T. C. Pellas, “In vivo MRI of cartilage pathogenesis in surgical models of osteoarthritis,” Skeletal Radiology, vol. 35, no. 8, pp. 555–564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. C. E. Kawcak, D. D. Frisbie, N. M. Werpy, R. D. Park, and C. W. McIlwraith, “Effects of exercise vs experimental osteoarthritis on imaging outcomes,” Osteoarthritis and Cartilage, vol. 16, no. 12, pp. 1519–1525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. J. M. Blair-Levy, C. E. Watts, N. M. Fiorientino, E. K. Dimitriadis, J. C. Marini, and P. E. Lipsky, “A type I collagen defect leads to rapidly progressive osteoarthritis in a mouse model,” Arthritis & Rheumatism, vol. 58, no. 4, pp. 1096–1106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. J. C. Goebel, R. Bolbos, M. Pham et al., “High-resolution MRI (7T) of femoro-tibial cartilage changes in the rat anterior cruciate ligament transection model of osteoarthritis: a cross-sectional study,” Rheumatology, vol. 49, no. 9, pp. 1654–1664, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. E. L. Dubois, R. E. Horowitz, H. B. Demopoulos, and R. Teplitz, “NZB/NZW mice as a model of systemic lupus erythematosus,” The Journal of the American Medical Association, vol. 195, no. 4, pp. 285–289, 1966. View at Publisher · View at Google Scholar · View at Scopus
  112. W. H. Simon, “Scale effects in animal joints. I. Articular cartilage thickness and compressive stress,” Arthritis & Rheumatism, vol. 13, no. 3, pp. 244–256, 1970. View at Scopus
  113. S. S. Glasson, T. J. Blanchet, and E. A. Morris, “The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse,” Osteoarthritis and Cartilage, vol. 15, no. 9, pp. 1061–1069, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Chapman, A. Takahashi, I. Meulenbelt et al., “A meta-analysis of European and Asian cohorts reveals a global role of a functional SNP in the 5 UTR of GDF5 with osteoarthritis susceptibility,” Human Molecular Genetics, vol. 17, no. 10, pp. 1497–1504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  115. L. Southam, J. Rodriguez-Lopez, J. M. Wilkins et al., “An SNP in the 5-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage,” Human Molecular Genetics, vol. 16, no. 18, pp. 2226–2232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. Miyamoto, A. Mabuchi, D. Shi et al., “A functional polymorphism in the 5 UTR of GDF5 is associated with susceptibility to osteoarthritis,” Nature Genetics, vol. 39, no. 4, pp. 529–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Gelse, K. Von der Mark, T. Aigner, J. Park, and H. Schneider, “Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells,” Arthritis & Rheumatism, vol. 48, no. 2, pp. 430–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. R. Kuroda, A. Usas, S. Kubo et al., “Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells,” Arthritis & Rheumatism, vol. 54, no. 2, pp. 433–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Nishida, S. Kubota, S. Kojima et al., “Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor),” Journal of Bone and Mineral Research, vol. 19, no. 8, pp. 1308–1319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Cowart, G. Hsieh, L. A. Black, et al., “Pharmacological characterization of A-960656, a histamine H3 receptor antagonist with efficacy in animal models of osteoarthritis and neuropathic pain,” European Journal of Pharmacology, vol. 684, no. 1–3, pp. 87–94, 2012. View at Publisher · View at Google Scholar
  121. A. S. Ahmed, J. Li, H. Erlandsson-Harris, et al., “Suppression of pain and joint destruction by inhibition of the proteasome system in experimental osteoarthritis,” PAIN, vol. 153, no. 1, pp. 18–26, 2012. View at Publisher · View at Google Scholar
  122. A. Chevrier, M. Nelea, M. B. Hurtig, C. D. Hoemann, and M. D. Buschmann, “Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair,” Journal of Orthopaedic Research, vol. 27, no. 9, pp. 1197–1203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. X. Wei, J. Gao, and K. Messner, “Maturation-dependent repair of untreated osteochondral defects in the rabbit knee joint,” Journal of Biomedical Materials Research, vol. 34, no. 1, pp. 63–72, 1997.
  124. M. Kaweblum, M. Del Carmen Aguilar, E. Blancas et al., “Histological and radiographic determination of the age of physeal closure of the distal femur, proximal tibia, and proximal fibula of the New Zealand white rabbit,” Journal of Orthopaedic Research, vol. 12, no. 5, pp. 747–749, 1994. View at Publisher · View at Google Scholar · View at Scopus
  125. C. Boulocher, E. Chereul, J. B. Langlois et al., “Non-invasive in vivo quantification of the medial tibial cartilage thickness progression in an osteoarthritis rabbit model with quantitative 3D high resolution micro-MRI,” Osteoarthritis and Cartilage, vol. 15, no. 12, pp. 1378–1387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Yoshimi, T. Kikuchi, T. Obara et al., “Effects of high-molecular-weight sodium hyaluronate on experimental osteoarthrosis induced by the resection of rabbit anterior cruciate ligament,” Clinical Orthopaedics and Related Research, vol. 298, pp. 296–304, 1994. View at Scopus
  127. C. Shimizu, T. Kubo, Y. Hirasawa, R. D. Coutts, and D. Amiel, “Histomorphometric and biochemical effect of various hyaluronans on early osteoarthritis,” The Journal of Rheumatology, vol. 25, no. 9, pp. 1813–1819, 1998. View at Scopus
  128. K. Takahashi, R. S. Goomer, F. Harwood, T. Kubo, Y. Hirasawa, and D. Amiel, “The effects of hyaluronan on matrix metalloproteinase-3 (MMP-3), interleukin-1β (IL-1β), and tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression during the development of osteoarthritis,” Osteoarthritis and Cartilage, vol. 7, no. 2, pp. 182–190, 1999. View at Publisher · View at Google Scholar · View at Scopus
  129. Q. Zhang, A. Chen, F. Liu, et al., “Efficacy of infliximab in a rabbit model of osteoarthritis,” Connective Tissue Research, vol. 53, no. 5, pp. 355–358, 2012. View at Publisher · View at Google Scholar
  130. D. D'Lima, J. Hermida, S. Hashimoto, C. Colwell, and M. Lotz, “Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis,” Arthritis & Rheumatism, vol. 54, no. 6, pp. 1814–1821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. W. Hongbin, D. Jingyuan, C. Linyun, and D. Yuming, “Carboxymethylated chitin reduces MMP-1 expression in rabbit ACLT osteoarthritic cartilage,” Annals of the Rheumatic Diseases, vol. 63, no. 4, pp. 369–372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  132. S.-Q. Liu, B. Qiu, L. Y. Chen, H. Peng, and Y. M. Du, “The effects of carboxymethylated chitosan on metalloproteinase-1, -3 and tissue inhibitor of metalloproteinase-1 gene expression in cartilage of experimental osteoarthritis,” Rheumatology International, vol. 26, no. 1, pp. 52–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. N. Elmali, I. Esenkaya, A. Harma, K. Ertem, Y. Turkoz, and B. Mizrak, “Effect of resveratrol in experimental osteoarthritis in rabbits,” Inflammation Research, vol. 54, no. 4, pp. 158–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. M. R. Doschak, J. M. LaMothe, D. M. L. Cooper et al., “Bisphosphonates reduce bone mineral loss at ligament entheses after joint injury,” Osteoarthritis and Cartilage, vol. 13, no. 9, pp. 790–797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  135. M. R. Doschak, G. R. Wohl, D. A. Hanley, R. C. Bray, and R. F. Zernicke, “Antiresorptive therapy conserves some periarticular bone and ligament mechanical properties after anterior cruciate ligament disruption in the rabbit knee,” Journal of Orthopaedic Research, vol. 22, no. 5, pp. 942–948, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. A. M. Bendele, S. L. White, and J. F. Hulman, “Osteoarthrosis in guinea pigs: histopathologic and scanning electron microscopic features,” Laboratory Animal Science, vol. 39, no. 2, pp. 115–121, 1989. View at Scopus
  137. P. A. Jimenez, S. S. Glasson, O. V. Trubetskoy, and H. B. Haimes, “Spontaneous osteoarthritis in Dunkin Hartley guinea pigs: histologic, radiologic, and biochemical changes,” Laboratory Animal Science, vol. 47, no. 6, pp. 598–601, 1997. View at Scopus
  138. D. C. Brown, R. C. Boston, J. C. Coyne, and J. T. Farrar, “Ability of the canine brief pain inventory to detect response to treatment in dogs with osteoarthritis,” Journal of the American Veterinary Medical Association, vol. 233, no. 8, pp. 1278–1283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. B. L. O'Connor, D. M. Visco, D. A. Heck, S. L. Myers, and K. D. Brandt, “Gait alterations in dogs after transection of the anterior cruciate ligament,” Arthritis & Rheumatism, vol. 32, no. 9, pp. 1142–1147, 1989. View at Scopus
  140. K. Lindblad-Toh, C. M. Wade, T. S. Mikkelsen et al., “Genome sequence, comparative analysis and haplotype structure of the domestic dog,” Nature, vol. 438, no. 7069, pp. 803–819, 2005. View at Publisher · View at Google Scholar · View at Scopus
  141. K. D. Rainsford, T. M. Skerry, P. Chindemi, and K. Delaney, “Effects of the NSAIDs meloxicam and indomethacin on cartilage proteoglycan synthesis and joint responses to calcium pyrophosphate crystals in dogs,” Veterinary Research Communications, vol. 23, no. 2, pp. 101–113, 1999. View at Scopus
  142. M. M. D. Scheck and L. Sakovich, “Degenerative joint disease of the canine hip: experimental production by multiple papain and prednisone injections,” Clinical Orthopaedics and Related Research, vol. 86, pp. 115–120, 1972. View at Scopus
  143. S. A. Johnston, “Osteoarthritis. Joint anatomy, physiology, and pathobiology,” The Veterinary Clinics of North America, vol. 27, no. 4, pp. 699–723, 1997. View at Scopus
  144. R. O. Sanderson, C. Beata, R. M. Flipo et al., “Systematic review of the management of canine osteoarthritis,” Veterinary Record, vol. 164, no. 14, pp. 418–424, 2009. View at Scopus
  145. J. L. Cook and J. T. Payne, “Surgical treatment of osteoarthritis,” The Veterinary Clinics of North America, vol. 27, no. 4, pp. 931–944, 1997. View at Scopus
  146. R. C. Billinghurst, L. Dahlberg, M. Ionescu et al., “Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage,” The Journal of Clinical Investigation, vol. 99, no. 7, pp. 1534–1545, 1997. View at Scopus
  147. B. V. Shlopov, W. R. Lie, C. L. Mainardi, A. A. Cole, S. Chubinskaya, and K. A. Hasty, “Osteoarthritic lesions: involvement of three different collagenases,” Arthritis & Rheumatism, vol. 40, no. 11, pp. 2065–2074, 1997. View at Publisher · View at Google Scholar · View at Scopus
  148. G.-H. Yuan, K. Masuko-Hongo, M. Sakata, et al., “The role of C-C chemokines and their receptors in osteoarthritis,” Arthritis & Rheumatism, vol. 44, no. 5, pp. 1056–1070, 2001.
  149. S. P. Oakley, I. Portek, Z. Szomor et al., “Arthroscopy—a potential “gold standard” for the diagnosis of the chondropathy of early osteoarthritis,” Osteoarthritis and Cartilage, vol. 13, no. 5, pp. 368–378, 2005. View at Publisher · View at Google Scholar · View at Scopus
  150. A. M. Rørvik and J. Teige, “Unstable stifles without clinical or radiographic osteoarthritis in young goats: an experimental study,” Acta Veterinaria Scandinavica, vol. 37, no. 3, pp. 265–272, 1996. View at Scopus
  151. S. Heiligenstein, M. Cucchiarini, M. W. Laschke et al., “Evaluation of nonbiomedical and biomedical grade alginates for the transplantation of genetically modified articular chondrocytes to cartilage defects in a large animal model in vivo,” The Journal of Gene Medicine, vol. 13, no. 4, pp. 230–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  152. B. Marquass, R. Schulz, P. Hepp et al., “Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes,” The American Journal of Sports Medicine, vol. 39, no. 7, pp. 1401–1412, 2011. View at Publisher · View at Google Scholar · View at Scopus
  153. Y. Lu, S. Dhanaraj, Z. Wang et al., “Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair,” Journal of Orthopaedic Research, vol. 24, no. 6, pp. 1261–1270, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. D. W. Richardson and C. C. Clark, “Effects of short-term cast immobilization on equine articular cartilage,” American Journal of Veterinary Research, vol. 54, no. 3, pp. 449–453, 1993. View at Scopus
  155. P. D. van Harreveld, J. D. Lillich, C. E. Kawcak, E. M. Gaughan, R. M. McLaughlin, and R. M. DeBowes, “Clinical evaluation of the effects of immobilization followed by remobilization and exercise on the metacarpophalangeal joint in horses,” American Journal of Veterinary Research, vol. 63, no. 2, pp. 282–288, 2002. View at Scopus
  156. P. D. van Harreveld, J. D. Lillich, C. E. Kawcak, A. S. Turner, and R. W. Norrdin, “Effects of immobilization followed by remobilization on mineral density, histomorphometric features, and formation of the bones of the metacarpophalangeal joint in horses,” American Journal of Veterinary Research, vol. 63, no. 2, pp. 276–281, 2002. View at Scopus
  157. D. D. Frisbie, Y. Lu, C. E. Kawcak, E. F. DiCarlo, F. Binette, and C. W. McIlwraith, “In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation,” The American Journal of Sports Medicine, vol. 37, no. 1, supplement, pp. 71S–80S, 2009. View at Scopus