About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2012 (2012), Article ID 805875, 16 pages
http://dx.doi.org/10.1155/2012/805875
Review Article

The Role of Different Subsets of Regulatory T Cells in Immunopathogenesis of Rheumatoid Arthritis

1Department of Immunology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 6446, Tehran 14155, Iran
2Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran

Received 21 July 2012; Revised 11 September 2012; Accepted 20 September 2012

Academic Editor: Ruben Burgos-Vargas

Copyright © 2012 Maryam Gol-Ara et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Jadidi-Niaragh and A. Mirshafiey, “Regulatory T-cell as orchestra leader in immunosuppression process of multiple sclerosis,” Immunopharmacology and Immunotoxicology, vol. 33, no. 3, pp. 545–567, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Vila, J. D. Isaacs, and A. E. Anderson, “Tregs and autoimmunity,” Current Opinion in Hematology, vol. 16, no. 4, pp. 274–279, 2009.
  3. R. Y. Lan, A. A. Ansari, Z. X. Lian, and M. E. Gershwin, “Regulatory T cells: development, function and role in autoimmunity,” Autoimmunity Reviews, vol. 4, no. 6, pp. 351–363, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Mauri and N. Carter, “Is there a feudal hierarchy amongst regulatory immune cells? More than just Tregs,” Arthritis Research & Therapy, vol. 11, no. 4, p. 237, 2009. View at Scopus
  5. R. K. Gershon and K. Kondo, “Cell interactions in the induction of tolerance: the role of thymic lymphocytes,” Immunology, vol. 18, no. 5, pp. 723–737, 1970. View at Scopus
  6. S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, “Immunologic self-tolerance maintained by activated T cells expressing IL- 2 receptor α-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases,” Journal of Immunology, vol. 155, no. 3, pp. 1151–1164, 1995. View at Scopus
  7. Y. Belkaid, “Regulatory T cells and infection: a dangerous necessity,” Nature Reviews Immunology, vol. 7, no. 11, pp. 875–888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Y. Wan and R. A. Flavell, “TGF-β and regulatory T cell in immunity and autoimmunity,” Journal of Clinical Immunology, vol. 28, no. 6, pp. 647–659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Jonuleit and E. Schmitt, “The regulator T cell family: distinct subsets and their interrelations,” Journal of Immunology, vol. 171, no. 12, pp. 6323–6327, 2003. View at Scopus
  10. L. S. K. Walker, A. Chodos, M. Eggena, H. Dooms, and A. K. Abbas, “Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo,” Journal of Experimental Medicine, vol. 198, no. 2, pp. 249–258, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Yamazaki, T. Iyoda, K. Tarbell et al., “Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells,” Journal of Experimental Medicine, vol. 198, no. 2, pp. 235–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. K. H. G. Mills, “Regulatory T cells: friend or foe in immunity to infection?” Nature Reviews Immunology, vol. 4, no. 11, pp. 841–855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Jordan, A. Boesteanu, A. J. Reed et al., “Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide,” Nature Immunology, vol. 2, no. 4, pp. 301–306, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Kronenberg and A. Rudensky, “Regulation of immunity by self-reactive T cells,” Nature, vol. 435, no. 7042, pp. 598–604, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Pennington, B. Silva-Santos, T. Silberzahn et al., “Early events in the thymus affect the balance of effector and regulatory T cells,” Nature, vol. 444, no. 7122, pp. 1073–1077, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Takahashi, K. Nakamura, K. Honda et al., “An inverse correlation of human peripheral blood regulatory T cell frequency with the disease activity of ulcerative colitis,” Digestive Diseases and Sciences, vol. 51, no. 4, pp. 677–686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sakaguchi, “Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self,” Nature Immunology, vol. 6, no. 4, pp. 345–352, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Asano, M. Toda, N. Sakaguchi, and S. Sakaguchi, “Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation,” Journal of Experimental Medicine, vol. 184, no. 2, pp. 387–396, 1996. View at Scopus
  19. M. K. Levings, R. Bacchetta, U. Schulz, and M. G. Roncarolo, “The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells,” International Archives of Allergy and Immunology, vol. 129, no. 4, pp. 263–276, 2002. View at Scopus
  20. C. M. Costantino, C. Baecher-Allan, and D. A. Hafler, “Multiple sclerosis and regulatory T cells,” Journal of Clinical Immunology, vol. 28, no. 6, pp. 697–706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. A. A. Vignali, “How many mechanisms do regulatory T cells need?” European Journal of Immunology, vol. 38, no. 4, pp. 908–911, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Fontenot, J. L. Dooley, A. G. Farr, and A. Y. Rudensky, “Developmental regulation of Foxp3 expression during ontogeny,” Journal of Experimental Medicine, vol. 202, no. 7, pp. 901–906, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. D. Fontenot, M. A. Gavin, and A. Y. Rudensky, “Foxp3 programs the development and function of CD4+CD25+ regulatory T cells,” Nature Immunology, vol. 4, no. 4, pp. 330–336, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Gavin, J. P. Rasmussen, J. D. Fontenot et al., “Foxp3-dependent programme of regulatory T-cell differentiation,” Nature, vol. 445, no. 7129, pp. 771–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Wu, M. Borde, V. Heissmeyer et al., “FOXP3 controls regulatory T cell function through cooperation with NFAT,” Cell, vol. 126, no. 2, pp. 375–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Mirshafiey and M. Mohsenzadegan, “TGF-β as a promising option in the treatment of multiple sclerosis,” Neuropharmacology, vol. 56, no. 6-7, pp. 929–936, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. J. C. Marie, J. J. Letterio, M. Gavin, and A. Y. Rudensky, “TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells,” Journal of Experimental Medicine, vol. 201, no. 7, pp. 1061–1067, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Nakamura, A. Kitani, and W. Strober, “Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β,” Journal of Experimental Medicine, vol. 194, no. 5, pp. 629–644, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Gorelik and R. A. Flavell, “Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease,” Immunity, vol. 12, no. 2, pp. 171–181, 2000. View at Scopus
  31. X. Valencia, G. Stephens, R. Goldbach-Mansky, M. Wilson, E. M. Shevach, and P. E. Lipsky, “TNF downmodulates the function of human CD4+CD25hi T-regulatory cells,” Blood, vol. 108, no. 1, pp. 253–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. A. M. Thornton and E. M. Shevach, “CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production,” Journal of Experimental Medicine, vol. 188, no. 2, pp. 287–296, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. M. de la Rosa, S. Rutz, H. Dorninger, and A. Scheffold, “Interleukin-2 is essential for CD4+CD25+ regulatory T cell function,” European Journal of Immunology, vol. 34, no. 9, pp. 2480–2488, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. M. G. Roncarlo and S. Gregori, “Is FOXP3 a bona fide marker for human regulatory T cells?” European Journal of Immunology, vol. 38, no. 4, pp. 925–927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. E. Morgan, J. H. M. Van Bilsen, A. M. Bakker et al., “Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans,” Human Immunology, vol. 66, no. 1, pp. 13–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Q. Tran, H. Ramsey, and E. M. Shevach, “Induction of FOXP3 expression in naive human CD4+FOXP3 - T cells by T-cell receptor stimulation is transforming growth factor-β-dependent but does not confer a regulatory phenotype,” Blood, vol. 110, no. 8, pp. 2983–2990, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Passerini, S. E. Allan, M. Battaglia et al., “STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+ CD25- effector T cells,” International Immunology, vol. 20, no. 3, pp. 421–431, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Zelenay, T. Lopes-Carvalho, I. Caramalho, M. F. Moraes-Fontes, M. Rebelo, and J. Demengeot, “Foxp3+ CD25- CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 11, pp. 4091–4096, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. A. Vignali, L. W. Collison, and C. J. Workman, “How regulatory T cells work,” Nature Reviews Immunology, vol. 8, no. 7, pp. 523–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Zheng, S. Josefowicz, A. Chaudhry, X. P. Peng, K. Forbush, and A. Y. Rudensky, “Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate,” Nature, vol. 463, no. 7282, pp. 808–812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Long, S. G. Park, I. Strickland, M. S. Hayden, and S. Ghosh, “Nuclear factor-κB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor,” Immunity, vol. 31, no. 6, pp. 921–931, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Hori, “c-Rel: a pioneer in directing regulatory T-cell lineage commitment?” European Journal of Immunology, vol. 40, no. 3, pp. 664–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. W. Liu, A. L. Putnam, Z. Xu-yu et al., “CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells,” Journal of Experimental Medicine, vol. 203, no. 7, pp. 1701–1711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. U. Feger, E. Tolosa, Y. H. Huang et al., “HLA-G expression defines a novel regulatory T-cell subset present in human peripheral blood and sites of inflammation,” Blood, vol. 110, no. 2, pp. 568–577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. T. R. Malek, A. Yu, V. Vincek, P. Scibelli, and L. Kong, “CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice: implications for the nonredundant function of IL-2,” Immunity, vol. 17, no. 2, pp. 167–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. G. D. Sempowski, S. J. Cross, C. S. Heinly, R. M. Scearce, and B. F. Haynes, “CD7 and CD28 are required for murine CD4+CD25+ regulatory T cell homeostasis and prevention of thyroiditis,” Journal of Immunology, vol. 172, no. 2, pp. 787–794, 2004. View at Scopus
  47. J. D. Fontenot, J. P. Rasmussen, M. A. Gavin, and A. Y. Rudensky, “A function for interleukin 2 in Foxp3-expressing regulatory T cells,” Nature Immunology, vol. 6, no. 11, pp. 1142–1151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Bayer, A. Yu, D. Adeegbe, and T. R. Malek, “Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period,” Journal of Experimental Medicine, vol. 201, no. 5, pp. 769–777, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. L. Szymczak-Workman, C. J. Workman, and D. A. Vignali, “Cutting edge: regulatory T cells do not require stimulation through their TCR to suppress,” Journal of immunology, vol. 182, no. 9, pp. 5188–5192, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. E. M. Shevach, “CD4+CD25+ suppressor T cells: more questions than answers,” Nature Reviews Immunology, vol. 2, no. 6, pp. 389–400, 2002. View at Scopus
  51. R. Khattri, T. Cox, S. A. Yasayko, and F. Ramsdell, “An essential role for Scurfin in CD4+CD25+ T regulatory cells,” Nature Immunology, vol. 4, no. 4, pp. 337–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. D. Dieckmann, C. H. Bruett, H. Ploettner, M. B. Lutz, and G. Schuler, “Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin 1-producing, contact-independent type 1-like regulatory T cells,” Journal of Experimental Medicine, vol. 196, no. 2, pp. 247–253, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Groux, A. O'Garra, M. Bigler et al., “A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis,” Nature, vol. 389, no. 6652, pp. 737–742, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. K. W. Moore, R. De Waal Malefyt, R. L. Coffman, and A. O'Garra, “Interleukin-10 and the interleukin-10 receptor,” Annual Review of Immunology, vol. 19, pp. 683–765, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Bacchetta, M. Bigler, J. L. Touraine et al., “High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells,” Journal of Experimental Medicine, vol. 179, no. 2, pp. 493–502, 1994. View at Scopus
  56. S. Pestka, C. D. Krause, D. Sarkar, M. R. Walter, Y. Shi, and P. B. Fisher, “Interleukin-10 and related cytokines and receptors,” Annual Review of Immunology, vol. 22, pp. 929–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Battaglia, S. Gregori, R. Bacchetta, and M. G. Roncarolo, “Tr1 cells: from discovery to their clinical application,” Seminars in Immunology, vol. 18, no. 2, pp. 120–127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. M. G. Roncarolo, S. Gregori, M. Battaglia, R. Bacchetta, K. Fleischhauer, and M. K. Levings, “Interleukin-10-secreting type 1 regulatory T cells in rodents and humans,” Immunological Reviews, vol. 212, pp. 28–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Sebastiani, P. Allavena, C. Albanesi et al., “Chemokine receptor expression and function in CD4+ T lymphocytes with regulatory activity,” Journal of Immunology, vol. 166, no. 2, pp. 996–1002, 2001. View at Scopus
  60. M. K. Levings, S. Gregori, E. Tresoldi, S. Cazzaniga, C. Bonini, and M. G. Roncarolo, “Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells,” Blood, vol. 105, no. 3, pp. 1162–1169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. P. L. Vieira, J. R. Christensen, S. Minaee et al., “IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory function to naturally occurring CD4+CD25+ regulatory T cells,” Journal of Immunology, vol. 172, no. 10, pp. 5986–5993, 2004. View at Scopus
  62. C. Veldman, A. Pahl, and M. Hertl, “Desmoglein 3-specific T regulatory 1 cells consist of two subpopulations with differential expression of the transcription factor Foxp3,” Immunology, vol. 127, no. 1, pp. 40–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Veldman, A. Pahl, S. Beissert et al., “Inhibition of the transcription factor Foxp3 converts desmoglein 3-specific type 1 regulatory T cells into Th2-like cells,” Journal of Immunology, vol. 176, no. 5, pp. 3215–3222, 2006. View at Scopus
  64. M. K. Levings, R. Sangregorio, F. Galbiati, S. Squadrone, R. De Waal Malefyt, and M. G. Roncarolo, “Ifn-α and il-10 induce the differentiation of human type 1 t regulatory cells1,” Journal of Immunology, vol. 166, no. 9, pp. 5530–5539, 2001. View at Scopus
  65. A. Wakkach, F. Cottrez, and H. Groux, “Differentiation of regulatory T cells 1 is induced by CD2 costimulation,” Journal of Immunology, vol. 167, no. 6, pp. 3107–3113, 2001. View at Scopus
  66. C. Kemper, A. C. Chan, J. M. Green, K. A. Brett, K. M. Murphy, and J. P. Atkinson, “Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype,” Nature, vol. 421, no. 6921, pp. 388–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. F. J. Barrat, D. J. Cua, A. Boonstra et al., “In vitro generation of interleukin 10-producing regulatory CD4+ T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines,” Journal of Experimental Medicine, vol. 195, no. 5, pp. 603–616, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. A. Wakkach, N. Fournier, V. Brun, J. P. Breittmayer, F. Cottrez, and H. Groux, “Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo,” Immunity, vol. 18, no. 5, pp. 605–617, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Gilliet and Y. J. Liu, “Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells,” Journal of Experimental Medicine, vol. 195, no. 6, pp. 695–704, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. C. M. Hawrylowicz and A. O'Garra, “Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma,” Nature Reviews Immunology, vol. 5, no. 4, pp. 271–283, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. R. Bacchetta, C. Sartirana, M. K. Levings, C. Bordignon, S. Narula, and M. G. Roncarolo, “Growth and expansion of human T regulatory type 1 cells are independent from TCR activation but require exogenous cytokines,” European Journal of Immunology, vol. 32, no. 8, pp. 2237–2245, 2002.
  72. Y. Chen, V. K. Kuchroo, J. Inobe, D. A. Hafler, and H. L. Weiner, “Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis,” Science, vol. 265, no. 5176, pp. 1237–1240, 1994. View at Scopus
  73. H. Fukaura, S. C. Kent, M. J. Pietrusewicz, S. J. Khoury, H. L. Weiner, and D. A. Hafler, “Induction of circulating myelin basic protein and proteolipid protein- specific transforming growth factor-β1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients,” Journal of Clinical Investigation, vol. 98, no. 1, pp. 70–77, 1996. View at Scopus
  74. H. L. Weiner, “Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells,” Immunological Reviews, vol. 182, pp. 207–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Ramsdell, “Foxp3 and natural regulatory T cells: key to a cell lineage?” Immunity, vol. 19, no. 2, pp. 165–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Takahashi, T. Tagami, S. Yamazaki et al., “Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4,” Journal of Experimental Medicine, vol. 192, no. 2, pp. 303–309, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. I. Apostolou, A. Sarukhan, L. Klein, and H. von Boehmer, “Origin of regulatory T cells with known specificity for antigen,” Nature Immunology, vol. 3, no. 8, pp. 756–763, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Mirshafiey and F. Jadidi-Niaragh, “Immunopharmacological role of the leukotriene receptor antagonists and inhibitors of leukotrienes generating enzymes in multiple sclerosis,” Immunopharmacology and Immunotoxicology, vol. 32, no. 2, pp. 219–227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. Y. Kiniwa, Y. Miyahara, H. Y. Wang et al., “CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer,” Clinical Cancer Research, vol. 13, no. 23, pp. 6947–6958, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. T. R. F. Smith and V. Kumar, “Revival of CD8+ Treg-mediated suppression,” Trends in Immunology, vol. 29, no. 7, pp. 337–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Xystrakis, A. S. Dejean, I. Bernard et al., “Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation,” Blood, vol. 104, no. 10, pp. 3294–3301, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. C. C. Chang, R. Ciubotariu, J. S. Manavalan et al., “Tolerization of dendritic cells by Ts cells: the crucial role of inhibitory receptors ILT3 and ILT4,” Nature Immunology, vol. 3, no. 3, pp. 237–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. L. Cosmi, F. Liotta, E. Lazzeri et al., “Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes,” Blood, vol. 102, no. 12, pp. 4107–4114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Mahic, K. Henjum, S. Yaqub et al., “Generation of highly suppressive adaptive CD8+CD25+FOXP3+ regulatory T cells by continuous antigen stimulation,” European Journal of Immunology, vol. 38, no. 3, pp. 640–646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Uss, A. T. Rowshani, B. Hooibrink, N. M. Lardy, R. A. W. Van Lier, and I. J. M. Ten Berge, “CD103 is a marker for alloantigen-induced regulatory CD8+ T cells,” Journal of Immunology, vol. 177, no. 5, pp. 2775–2783, 2006. View at Scopus
  86. J. Y. Niederkorn, “Emerging concepts in CD8+ T regulatory cells,” Current Opinion in Immunology, vol. 20, no. 3, pp. 327–331, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. L. Myers, M. Croft, B. S. Kwon, R. S. Mittler, and A. T. Vella, “Peptide-specific CD8 T regulatory cells use IFN-γ to elaborate TGF-β-based suppression,” Journal of Immunology, vol. 174, no. 12, pp. 7625–7632, 2005. View at Scopus
  88. R. Cone, S. Chattopadhyay, and J. O'Rourke, “Control of delayed-type hypersensitivity by ocular-induced CD8+ regulatory T cells,” Chemical Immunology and Allergy, vol. 94, pp. 138–149, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. R. E. Cone, S. Chattopadhyay, R. Sharafieh, Y. Lemire, and J. O'Rourke, “The suppression of hypersensitivity by ocular-induced CD8+ T cells requires compatibility in the Qa-1 haplotype,” Immunology and Cell Biology, vol. 87, no. 3, pp. 241–248, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. B. J. Fowlkes, A. M. Kruisbeek, and H. Ton-That, “A novel population of T-cell receptor αβ-bearing thymocytes which predominantly expresses a single V(β) gene family,” Nature, vol. 329, no. 6136, pp. 251–254, 1987. View at Scopus
  91. H. R. MacDonald, “Development and selection of NKT cells,” Current Opinion in Immunology, vol. 14, no. 2, pp. 250–254, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. D. I. Godfrey, K. J. L. Hammond, L. D. Poulton, M. J. Smyth, and A. G. Baxter, “NKT cells: facts, functions and fallacies,” Immunology Today, vol. 21, no. 11, pp. 573–583, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. D. I. Godfrey, H. R. MacDonald, M. Kronenberg, M. J. Smyth, and L. Van Kaer, “NKT cells: what's in a name?” Nature Reviews Immunology, vol. 4, no. 3, pp. 231–237, 2004. View at Scopus
  94. L. Van Kaer, “NKT cells: T lymphocytes with innate effector functions,” Current Opinion in Immunology, vol. 19, no. 3, pp. 354–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. A. L. Cava, L. V. Kaer, and Fu-Dong-Shi, “CD4+CD25+ Tregs and NKT cells: regulators regulating regulators,” Trends in Immunology, vol. 27, no. 7, pp. 322–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Huber, D. Sartini, and M. Exley, “Role of CD1d in Coxsackievirus B3-induced myocarditis,” Journal of Immunology, vol. 170, no. 6, pp. 3147–3153, 2003. View at Scopus
  97. A. V. Rachitskaya, A. M. Hansen, R. Horai et al., “Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion,” Journal of Immunology, vol. 180, no. 8, pp. 5167–5171, 2008. View at Scopus
  98. D. I. Godfrey, M. J. McConville, and D. G. Pellicci, “Chewing the fat on natural killer T cell development,” Journal of Experimental Medicine, vol. 203, no. 10, pp. 2229–2232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. D. I. Godfrey and S. P. Berzins, “Control points in NKT-cell development,” Nature Reviews Immunology, vol. 7, no. 7, pp. 505–518, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Benlagha, A. Weiss, A. Beavis, L. Teyton, and A. Bendelac, “In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers,” Journal of Experimental Medicine, vol. 191, no. 11, pp. 1895–1903, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. J. L. Matsuda and L. Gapin, “Developmental program of mouse Vα14i NKT cells,” Current Opinion in Immunology, vol. 17, no. 2, pp. 122–130, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. K. I. Seino and M. Taniguchi, “Functionally distinct NKT cell subsets and subtypes,” Journal of Experimental Medicine, vol. 202, no. 12, pp. 1623–1626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. S. Jiang, D. S. Game, D. Davies, G. Lombardi, and R. I. Lechler, “Activated CD1d-restricted natural killer T cells secrete IL-2: innate help for CD4+CD25+ regulatory T cells?” European Journal of Immunology, vol. 35, no. 4, pp. 1193–1200, 2005. View at Publisher · View at Google Scholar · View at Scopus
  104. K. Benlagha, T. Kyin, A. Beavis, L. Teyton, and A. Bendelac, “A thymic precursor to the NK T cell lineage,” Science, vol. 296, no. 5567, pp. 553–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Gapin, J. L. Matsuda, C. D. Surh, and M. Kronenberg, “NKT cells derive from double-positive thymocytes that are positively selected by CD1d,” Nature Immunology, vol. 2, no. 10, pp. 971–978, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. G. Eberl and H. R. MacDonald, “Rapid death and regeneration of NKT cells in anti-CD3ε- or IL-12- treated mice: a major role for bone marrow in NKT cell homeostasis,” Immunity, vol. 9, no. 3, pp. 345–353, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Bendelac, “Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes,” Journal of Experimental Medicine, vol. 182, no. 6, pp. 2091–2096, 1995. View at Publisher · View at Google Scholar · View at Scopus
  108. D. G. Pellicci, K. J. L. Hammond, A. P. Uldrich, A. G. Baxter, M. J. Smyth, and D. I. Godfrey, “A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1-CD4+ CD1d-dependent precursor stage,” Journal of Experimental Medicine, vol. 195, no. 7, pp. 835–844, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. D. G. Pellicci, A. P. Uldrich, K. Kyparissoudis et al., “Intrathymic NKT cell development is blocked by the presence of α-galactosylceramide,” European Journal of Immunology, vol. 33, no. 7, pp. 1816–1823, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. T. Chun, M. J. Page, L. Gapin et al., “CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells,” Journal of Experimental Medicine, vol. 197, no. 7, pp. 907–918, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Chung, A. Aoukaty, J. Dutz, C. Terhorst, and R. Tan, “Cutting edge: signaling lymphocytic activation molecule-associated protein controls NKT cell functions,” Journal of Immunology, vol. 174, no. 6, pp. 3153–3157, 2005. View at Scopus
  112. A. P. Vicari, A. Herbelin, M. D. C. Leite-de-Moraes, U. Von Freeden-Jeffry, R. Murray, and A. Zlotnik, “NK1.1+ T cells from IL-7-deficient mice have a normal distribution and selection but exhibit impaired cytokine production,” International Immunology, vol. 8, no. 11, pp. 1759–1766, 1996. View at Publisher · View at Google Scholar · View at Scopus
  113. J. S. Bezbradica, L. E. Gordy, A. K. Stanic et al., “Granulocyte-macrophage colony-stimulating factor regulates effector differentiation of invariant natural killer T cells during thymic ontogeny,” Immunity, vol. 25, no. 3, pp. 487–497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. J. L. Matsuda, Q. Zhang, R. Ndonye, S. K. Richardson, A. R. Howell, and L. Gapin, “T-bet concomitantly controls migration, survival, and effector functions during the development of Vα14i NKT cells,” Blood, vol. 107, no. 7, pp. 2797–2805, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. P. J. Kim, S. Y. Pai, M. Brigl, G. S. Besra, J. Gumperz, and I. C. Ho, “GATA-3 regulates the development and function of invariant NKT cells,” Journal of Immunology, vol. 177, no. 10, pp. 6650–6659, 2006. View at Scopus
  116. H. D. Lacorazza, Y. Miyazaki, A. Di Cristofano et al., “The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells,” Immunity, vol. 17, no. 4, pp. 437–449, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. M. T. Wilson, C. Johansson, D. Olivares-Villagómez et al., “The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 10913–10918, 2003. View at Publisher · View at Google Scholar · View at Scopus
  118. P. Gadue and P. L. Stein, “NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation,” Journal of Immunology, vol. 169, no. 5, pp. 2397–2406, 2002. View at Scopus
  119. F. Flores-Borja, E. C. Jury, C. Mauri, and M. R. Ehrenstein, “Defects in CTLA-4 are associated with abnormal regulatory T cell function in rheumatoid arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 49, pp. 19396–19401, 2008. View at Publisher · View at Google Scholar · View at Scopus
  120. J. M. Sempere-Ortells, V. Pérez-García, G. Marín-Alberca et al., “Quantification and phenotype of regulatory T cells in rheumatoid arthritis according to disease activity score-28,” Autoimmunity, vol. 42, no. 8, pp. 636–645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. K. Nistala and L. R. Wedderburn, “Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis,” Rheumatology, vol. 48, no. 6, pp. 602–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. M. C. Boissier, E. Assier, J. Biton, A. Denys, G. Falgarone, and N. Bessis, “Regulatory T cells (Treg) in rheumatoid arthritis,” Joint Bone Spine, vol. 76, no. 1, pp. 10–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. J. A. G. van Roon, J. W. J. Bijlsma, and F. P. J. G. Lafeber, “Diversity of regulatory T cells to control arthritis,” Best Practice and Research, vol. 20, no. 5, pp. 897–913, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. A. E. Anderson and J. D. Isaacs, “Tregs and rheumatoid arthritis,” Acta Reumatologica Portuguesa, vol. 33, no. 1, pp. 17–33, 2008. View at Scopus
  125. C. Chattopadhyay, H. Chattopadhyay, and J. B. Natvig, “Lack of suppressor cell activity in rheumatoid synovial lymphocytes,” Scandinavian Journal of Immunology, vol. 10, no. 4, pp. 309–316, 1979. View at Scopus
  126. H. Xue, F. Liang, N. Liu et al., “Potent antirheumatic activity of a new DNA vaccine targeted to B7-2/CD28 costimulatory signaling pathway in autoimmune arthritis,” Human Gene Therapy, vol. 22, no. 1, pp. 65–76, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Oh, A. L. Rankin, and A. J. Caton, “CD4+CD25+ regulatory T cells in autoimmune arthritis,” Immunological Reviews, vol. 233, no. 1, pp. 97–111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. N. Nik Tavakoli, B. D. Hambly, D. R. Sullivan, and S. Bao, “Forkhead box protein 3: essential immune regulatory role,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 11, pp. 2369–2373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. R. Haque, F. Lei, X. Xiong, Y. Wu, and J. Song, “FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development,” Arthritis Research and Therapy, vol. 12, no. 2, article R66, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. H. Moncrieffe, K. Nistala, Y. Kamhieh et al., “High expression of the ectonucleotidase CD39 on T cells from the inflamed site identifies two distinct populations, one regulatory and one memory T cell population,” Journal of Immunology, vol. 185, no. 1, pp. 134–143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. L. Guo, J. Tian, E. Marinova, B. Zheng, and S. Han, “Inhibition of clonal expansion by Foxp3 expression as a mechanism of controlled T-cell responses and autoimmune disease,” European Journal of Immunology, vol. 40, no. 1, pp. 71–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. E. Gonzalez-Rey, M. A. Gonzalez, N. Varela et al., “Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 1, pp. 241–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Raghavan, D. Cao, M. Widhe et al., “FOXP3 expression in blood, synovial fluid and synovial tissue during inflammatory arthritis and intra-articular corticosteroid treatment,” Annals of the Rheumatic Diseases, vol. 68, no. 12, pp. 1908–1915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. J. Bayry, S. Sibéril, F. Triebel, D. F. Tough, and S. V. Kaveri, “Rescuing CD4+CD25+ regulatory T-cell functions in rheumatoid arthritis by cytokine-targeted monoclonal antibody therapy,” Drug Discovery Today, vol. 12, no. 13-14, pp. 548–552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  135. G. M. Han, N. J. O'Neil-Andersen, R. B. Zurier, and D. A. Lawrence, “CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis,” Cellular Immunology, vol. 253, no. 1-2, pp. 92–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  136. J. M. R. Van Amelsfort, J. A. G. Van Roon, M. Noordegraaf et al., “Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis,” Arthritis and Rheumatism, vol. 56, no. 3, pp. 732–742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. A. Zanin-Zhorov, Y. Ding, S. Kumari et al., “Protein kinase C-θ mediates negative feedback on regulatory T cell function,” Science, vol. 328, no. 5976, pp. 372–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. G. Chen, J. Hao, Y. Xi et al., “The therapeutic effect of vasoactive intestinal peptide on experimental arthritis is associated with CD4+CD25+ T regulatory cells,” Scandinavian Journal of Immunology, vol. 68, no. 6, pp. 572–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. Y. J. Heo, Y. B. Joo, H. J. Oh et al., “IL-10 suppresses Th17 cells and promotes regulatory T cells in the CD4+ T cell population of rheumatoid arthritis patients,” Immunology Letters, vol. 127, no. 2, pp. 150–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. M. Benito-Miguel, Y. García-Carmona, A. Balsa et al., “A dual action of rheumatoid arthritis synovial fibroblast IL-15 expression on the equilibrium between CD4+CD25+ regulatory T cells and CD4+CD25- responder T cells,” Journal of Immunology, vol. 183, no. 12, pp. 8268–8279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. T. Cao, S. E. Wenzel, W. A. Faubion, G. Harriman, and L. Li, “Enhanced suppressive function of regulatory T cells from patients with immune-mediated diseases following successful ex vivo expansion,” Clinical Immunology, vol. 136, no. 3, pp. 329–337, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Khoury, J. Adriaansen, M. J. B. M. Vervoordeldonk et al., “Inflammation-inducible anti-TNF gene expression mediated by intra-articular injection of serotype 5 adeno-associated virus reduces arthritis,” Journal of Gene Medicine, vol. 9, no. 7, pp. 596–604, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. J. Wang, H. Van Dongen, H. U. Scherer, T. W. J. Huizinga, and R. E. M. Toes, “Suppressor activity among CD4+,CD25++ T cells is discriminated by membrane-bound tumor necrosis factor α,” Arthritis and Rheumatism, vol. 58, no. 6, pp. 1609–1618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  144. S. J. Saouaf, B. Li, G. Zhang et al., “Deacetylase inhibition increases regulatory T cell function and decreases incidence and severity of collagen-induced arthritis,” Experimental and Molecular Pathology, vol. 87, no. 2, pp. 99–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. C. M. Wei, J. H. Lee, L. C. Wang, Y. H. Yang, L. Y. Chang, and B. L. Chiang, “Frequency and phenotypic analysis of CD4+CD25+ regulatory T cells in children with juvenile idiopathic arthritis,” Journal of Microbiology, Immunology and Infection, vol. 41, no. 1, pp. 78–87, 2008. View at Scopus
  146. F. Förger, N. Marcoli, S. Gadola, B. Möller, P. M. Villiger, and M. Østensen, “Pregnancy induces numerical and functional changes of CD4+CD25 high regulatory T cells in patients with rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 67, no. 7, pp. 984–990, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. G. Afshan, N. Afzal, S. Qureshi, et al., “CD4+CD25(hi) Tregs in healthy males and females mediate gender difference in the prevalence of autoimmune diseases,” Clinical Laboratory, vol. 58, no. 5-6, pp. 567–571, 2012.
  148. M. M. Zaiss, B. Frey, A. Hess et al., “Regulatory T cells protect from local and systemic bone destruction in arthritis,” Journal of Immunology, vol. 184, no. 12, pp. 7238–7246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Xinqiang, L. Fei, L. Nan et al., “Construction and characterization of a novel DNA vaccine that is potent antigen-specific tolerizing therapy for experimental arthritis by increasing CD4+CD25+Treg cells and inducing Th1 to Th2 shift in both cells and cytokines,” Vaccine, vol. 27, no. 5, pp. 690–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. K. Yakimchuk, K. S. Nandakumar, L. Chen, et al., “Keratinocyte growth factor (KGF) delays the onset of collagen- induced arthritis,” Autoimmunity, vol. 45, no. 7, pp. 510–515, 2012. View at Publisher · View at Google Scholar
  151. H. Liu and B. P. Leung, “CD4+CD25+ regulatory T cells in health and disease,” Clinical and Experimental Pharmacology and Physiology, vol. 33, no. 5-6, pp. 519–524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  152. H. Appel, L. Neure, M. Kuhne, J. Braun, M. Rudwaleit, and J. Sieper, “An elevated level of IL-10- and TGF β-secreting T cells, B cells and macrophages in the synovial membrane of patients with reactive arthritis compared to rheumatoid arthritis,” Clinical Rheumatology, vol. 23, no. 5, pp. 435–440, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. E. Toussirot, E. Robinet, P. Saas et al., “Bacterial extract (OM-89) specific and non specific immunomodulation in rheumatoid arthritis patients,” Autoimmunity, vol. 39, no. 4, pp. 299–306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  154. M. Kavousanaki, A. Makrigiannakis, D. Boumpas, and P. Verginis, “Novel role of plasmacytoid dendritic cells in humans induction of interleukin-10-producing treg cells by plasmacytoid dendritic cells in patients with rheumatoid arthritis responding to therapy,” Arthritis and Rheumatism, vol. 62, no. 1, pp. 53–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  155. C. Xi, L. Tan, Y. Sun et al., “A novel recombinant peptide containing only two T-cell tolerance epitopes of chicken type II collagen that suppresses collagen-induced arthritis,” Molecular Immunology, vol. 46, no. 4, pp. 729–737, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. S. Xinqiang, L. Fei, L. Nan et al., “Therapeutic efficacy of experimental rheumatoid arthritis with low-dose methotrexate by increasing partially CD4+CD25+Treg cells and inducing Th1 to Th2 shift in both cells and cytokines,” Biomedicine and Pharmacotherapy, vol. 64, no. 7, pp. 463–471, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. M. Suzuki, C. Konya, J. J. Goronzy, and C. M. Weyand, “Inhibitory CD8+ T cells in autoimmune disease,” Human Immunology, vol. 69, no. 11, pp. 781–789, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. C. Konya, J. J. Goronzy, and C. M. Weyand, “Treating autoimmune disease by targeting CD8+ T suppressor cells,” Expert Opinion on Biological Therapy, vol. 9, no. 8, pp. 951–965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. E. A. G. Reis, D. A. Athanazio, I. Lima et al., “NK and NKT cell dynamics after rituximab therapy for systemic lupus erythematosus and rheumatoid arthritis,” Rheumatology International, vol. 29, no. 4, pp. 469–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  160. J. Pawlowska, A. Mikosik, M. Soroczynska-Cybula, et al., “Different distribution of CD4 and CD8 t cells in synovial membrane and peripheral blood of rheumatoid arthritis and osteoarthritis patients,” Folia Histochemica et Cytobiologica, vol. 47, no. 4, pp. 627–632, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. M. Prelog, N. Schwarzenbrunner, E. Tengg et al., “Quantitative alterations of CD8+ T cells in juvenile idiopathic arthritis patients in remission,” Clinical Rheumatology, vol. 28, no. 4, pp. 385–389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. H. J. Baek, L. Zhang, L. B. Jarvis, and J. S. H. Gaston, “Increased IL-4+ CD8+ T cells in peripheral blood and autoreactive CD8+ T cell lines of patients with inflammatory arthritis,” Rheumatology, vol. 47, no. 6, pp. 795–803, 2008. View at Publisher · View at Google Scholar · View at Scopus
  163. V. Parietti, H. Chifflot, J. Sibilia, S. Muller, and F. Monneaux, “Rituximab treatment overcomes reduction of regulatory iNKT cells in patients with rheumatoid arthritis,” Clinical Immunology, vol. 134, no. 3, pp. 331–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. S. Segawa, D. Goto, Y. Yoshiga et al., “Low levels of soluble CD1d protein alters NKT cell function in patients with rheumatoid arthritis,” International Journal of Molecular Medicine, vol. 24, no. 4, pp. 481–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Miellot-Gafsou, J. Biton, E. Bourgeois, A. Herbelin, M. C. Boissier, and N. Bessis, “Early activation of invariant natural killer T cells in a rheumatoid arthritis model and application to disease treatment,” Immunology, vol. 130, no. 2, pp. 296–306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. S. J. Tudhope, A. Von Delwig, J. Falconer et al., “Profound invariant natural killer T-cell deficiency in inflammatory arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 10, pp. 1873–1879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. H. Carvalheiro, J. A. da Silva, and M. M. Souto-Carneiro, “Potential roles for CD8+ T cells in rheumatoid arthritis,” Autoimmunity Reviews. In press.