About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2013 (2013), Article ID 461486, 14 pages
http://dx.doi.org/10.1155/2013/461486
Clinical Study

Differences in Mammalian Target of Rapamycin Gene Expression in the Peripheral Blood and Articular Cartilages of Osteoarthritic Patients and Disease Activity

1Clinical Immunology Department, Research Institute of Rheumatology, Russian Academy of Medical Sciences, Moscow 115522, Russia
2Department of Surgery, McGill University, Montreal, QC, Canada H3A OG4
3Osteoarthritis Laboratory, Research Institute of Rheumatology, Russian Academy of Medical Sciences, Moscow 115522, Russia
4Pathomorphology Department, Research Institute of Rheumatology, Russian Academy of Medical Sciences, Moscow 115522, Russia
5Statistics Department, Research Institute of Rheumatology, Russian Academy of Medical Sciences, Moscow 115522, Russia
6Forensic Medicine Service, Moscow City Health Department, Moscow 111020, Russia
7Surgery Department, Research Institute of Rheumatology, Russian Academy of Medical Sciences, Moscow 115522, Russia

Received 28 February 2013; Revised 12 May 2013; Accepted 12 May 2013

Academic Editor: Ruben Burgos-Vargas

Copyright © 2013 Elena V. Tchetina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Poole, F. Guilak, and S. B. Abramson, “Etiopathogenesis of osteoarthritis,” in Osteoarthritis: Diagnosis and Medical/Surgical Management, R. W. Moskowitz, R. D. Altman, M. C. Hochberg, J. A. Buckwalter, and V. M. Goldberg, Eds., pp. 27–49, Williams & Wilkins, Lippincott, Pa, USA, 4th edition, 2007.
  2. S. Mahr, G. R. Burmester, D. Hilke et al., “Cis- and trans-acting gene regulation is associated with osteoarthritis,” American Journal of Human Genetics, vol. 78, no. 5, pp. 793–803, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. K. W. Marshall, H. Zhang, T. D. Yager et al., “Blood-based biomarkers for detecting mild osteoarthritis in the human knee,” Osteoarthritis and Cartilage, vol. 13, no. 10, pp. 861–871, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Attur, I. Belitskaya-Lévy, C. Oh et al., “Increased interleukin-1β gene expression in peripheral blood leukocytes is associated with increased pain and predicts risk for progression of symptomatic knee osteoarthritis,” Arthritis and Rheumatism, vol. 63, no. 7, pp. 1908–1917, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. E. V. Tchetina, “Developmental mechanisms in articular cartilage degradation in osteoarthritis,” Arthritis, vol. 2011, Article ID 683970, 16 pages, 2011. View at Publisher · View at Google Scholar
  6. E. V. Tchetina, G. Squires, and A. R. Poole, “Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions,” Journal of Rheumatology, vol. 32, no. 5, pp. 876–886, 2005. View at Scopus
  7. E. V. Tchetina, M. Kobayashi, T. Yasuda, T. Meijers, I. Pidoux, and A. R. Poole, “Chondrocyte hypertrophy can be induced by a cryptic sequence of type II collagen and is accompanied by the induction of MMP-13 and collagenase activity: implications for development and arthritis,” Matrix Biology, vol. 26, no. 4, pp. 247–258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. E. V. Tchetina, J. Antoniou, M. Tanzer, D. J. Zukor, and A. R. Poole, “Transforming growth factor-β2 suppresses collagen cleavage in cultured human osteoarthritic cartilage, reduces expression of genes associated with chondrocyte hypertrophy and degradation, and increases prostaglandin E 2 production,” American Journal of Pathology, vol. 168, no. 1, pp. 131–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. C. Rousseau and P. D. Delmas, “Biological markers in osteoarthritis,” Nature Clinical Practice Rheumatology, vol. 3, no. 6, pp. 346–356, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Grcevic, Z. Jajic, N. Kovacic et al., “Peripheral blood expression profiles of bone morphogenetic proteins, tumor necrosis factor-superfamily molecules, and transcription factor Runx2 could be used as markers of the form of arthritis, disease activity, and therapeutic responsiveness,” Journal of Rheumatology, vol. 37, no. 2, pp. 246–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. D. Chang, K. Watanabe, E. V. Broude et al., “Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications for carcinogenesis, senescence, and age-related diseases,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 4291–4296, 2000. View at Scopus
  12. K. Fukuda, “Progress of research in osteoarthritis. Involvement of reactive oxygen species in the pathogenesis of osteoarthritis,” Clinical calcium, vol. 19, no. 11, pp. 1602–1606, 2009. View at Scopus
  13. S. M. Dai, Z. Z. Shan, H. Nakamura et al., “Catabolic stress induces features of chondrocyte senescence through overexpression of caveolin 1: possible involvement of caveolin 1-induced down-regulation of articular chondrocytes in the pathogenesis of osteoarthritis,” Arthritis and Rheumatism, vol. 54, no. 3, pp. 818–831, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Sesselmann, S. Söder, R. Voigt, J. Haag, S. P. Grogan, and T. Aigner, “DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes,” Osteoarthritis and Cartilage, vol. 17, no. 4, pp. 507–512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Hay and N. Sonnenberg, “Upstream and downstream of mTOR,” Genes & Development, vol. 18, no. 16, pp. 1926–1945, 2004.
  16. J. Bohensky, S. Leshinsky, V. Srinivas, and I. M. Shapiro, “Chondrocyte autophagy is stimulated by HIF-1 dependent AMPK activation and mTOR suppression,” Pediatric Nephrology, vol. 25, no. 4, pp. 633–642, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. S. Kim, Y. W. Ke, V. Auyeung, Q. Chen, P. A. Gruppuso, and C. Phornphutkul, “Leucine restriction inhibits chondrocyte proliferation and differentiation through mechanisms both dependent and independent of mTOR signaling,” American Journal of Physiology, vol. 296, no. 6, pp. E1374–E1382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. P. Sanchez and Y. Z. He, “Bone growth during rapamycin therapy in young rats,” BMC Pediatrics, vol. 9, article 3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Cejka, S. Hayer, B. Niederreiter et al., “Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis,” Arthritis and Rheumatism, vol. 62, no. 8, pp. 2294–2302, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Caramés, N. Taniguchi, S. Otsuki, F. J. Blanco, and M. Lotz, “Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis,” Arthritis and Rheumatism, vol. 62, no. 3, pp. 791–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Carames, A. Hasegawa, N. Taniguchi, S. Miyaki, F. J. Blanco, and M. Lotz, “Autophagy activation by rapamycin reduces severity of experimental osteoarthritis,” Annals of Rheumatic Diseases, vol. 71, no. 4, pp. 575–581, 2012.
  22. T. Laragione and P. S. Gulko, “mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis,” Molecular Medicine, vol. 16, no. 9-10, pp. 352–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Raught, A. C. Gingras, and N. Sonenberg, “The target of rapamycin (TOR) proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 13, pp. 7037–7044, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Lu, E. Capan, and C. Li, “Autophagy induction and autophagic cell death in effector T cells,” Autophagy, vol. 3, no. 2, pp. 158–159, 2007. View at Scopus
  25. Y. Wei, S. Sinha, and B. Levine, “Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation,” Autophagy, vol. 4, no. 7, pp. 949–951, 2008. View at Scopus
  26. F. J. Blanco, R. Guitian, E. Vazquez-Martul, F. J. de Toro, and F. Galdo, “Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology,” Arthritis & Rheumatism, vol. 41, no. 2, pp. 284–289, 1998.
  27. K. Kuhn, D. D. D’Lima, S. Hashimoto, and M. Lotz, “Cell death in cartilage,” Osteoarthritis & Cartilage, vol. 12, no. 1, pp. 1–16, 2004.
  28. N. Yatsugi, T. Tsukazaki, M. Osaki, T. Koji, S. Yamashita, and H. Shindo, “Apoptosis of articular chondrocytes in rheumatoid arthritis and osteoarthritis: correlation of apoptosis with degree of cartilage destruction and expression of apoptosis-related proteins of p53 and c-myc,” Journal of Orthopaedic Science, vol. 5, no. 2, pp. 150–156, 2000. View at Scopus
  29. M. Zhu, M. Chen, M. Zuscik et al., “Inhibition of β-catenin signaling in articular chondrocytes results in articular cartilage destruction,” Arthritis and Rheumatism, vol. 58, no. 7, pp. 2053–2064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Aigner, M. Hemmel, D. Neureiter, et al., “Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and osteoarthritic human knee cartilage,” Arthritis & Rheumatism, vol. 44, no. 6, pp. 1304–1312, 2001.
  31. J. P. Pelletier, J. Martel-Pelletier, and S. B. Abramson, “Osteoarthritis, an inflammatory disease: potential implication for the selection of new therapeutic targets,” Arthritis & Rheumatism, vol. 39, no. 9, pp. 1535–1544, 1999.
  32. S. R. Goldring and M. B. Goldring, “The role of cytokines in cartilage matrix degeneration in osteoarthritis,” Clinical Orthopaedics and Related Research, no. 427, pp. S27–S36, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Fraenkel, R. Roubenoff, M. LaValley et al., “The association of peripheral monocyte derived interleukin 1β (IL-1β), IL-1 receptor antagonist, and tumor necrosis factor-α with osteoarthritis in the elderly,” Journal of Rheumatology, vol. 25, no. 9, pp. 1820–1826, 1998. View at Scopus
  34. I. R. Patel, M. G. Attur, R. N. Patel et al., “TNF-α convertase enzyme from human arthritis-affected cartilage: isolation of cDNA by differential display, expression of the active enzyme, and regulation of TNF-α,” Journal of Immunology, vol. 160, no. 9, pp. 4570–4579, 1998. View at Scopus
  35. R. Altman, E. Asch, and D. Bloch, “Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee,” Arthritis and Rheumatism, vol. 29, no. 8, pp. 1039–1052, 1986. View at Scopus
  36. H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” Journal of Bone and Joint Surgery A, vol. 53, no. 3, pp. 523–537, 1971. View at Scopus
  37. A. P. Hollander, I. Pidoux, A. Reiner, C. Rorabeck, R. Bourne, and A. R. Poole, “Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration,” Journal of Clinical Investigation, vol. 96, no. 6, pp. 2859–2869, 1995. View at Scopus
  38. J. H. Kellgren and J. S. Lawrence, “Radiological assessment of osteo-arthrosis,” Annals of the Rheumatic Diseases, vol. 16, no. 4, pp. 494–502, 1957. View at Scopus
  39. N. Bellamy, WOMAC Osteoarthritis Index: A User’s Guide, University of Western Ontario, London, UK, 1995.
  40. M. Backhaus, G. R. Burmester, T. Gerber et al., “Guidelines for musculoskeletal ultrasound in rheumatology,” Annals of the Rheumatic Diseases, vol. 60, no. 7, pp. 641–649, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. World Health Organization Study Group: Assessment of Fracture Risk and is Application for Screening for Postmenopausal Osteoporosis, WHO, Geneva, Switzerland, 1994.
  42. B. K. Son, R. L. Roberts, B. J. Ank, and E. R. Stiehm, “Effects of anticoagulant, serum, and temperature on the natural killer activity of human peripheral blood mononuclear cells stored overnight,” Clinical and Diagnostic Laboratory Immunology, vol. 3, no. 3, pp. 260–264, 1996. View at Scopus
  43. S. Isotani, K. Hara, C. Tokunaga, H. Inoue, J. Avruch, and K. Yonezawa, “Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase a in vitro,” Journal of Biological Chemistry, vol. 274, no. 48, pp. 34493–34498, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. C. G. Proud, “p70 S6 kinase: an enigma with variations,” Trends in Biochemical Sciences, vol. 21, no. 5, pp. 181–185, 1996.
  45. D. C. Fingar, S. Salama, C. Tsou, E. Harlow, and J. Blenis, “Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E,” Genes and Development, vol. 16, no. 12, pp. 1472–1487, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  47. K. J. Livak, “Comparative Ct method. ABI Prism 7700 sequence detection system,” in User Bulletin No. 2. Foster City, PE Applied Biosystems, Foster City, Calif, USA, 1997.
  48. T. D. Spector, J. E. Dacre, P. A. Harris, and E. C. Huskisson, “Radiological progression of osteoarthritis: an 11 year follow up study of the knee,” Annals of the Rheumatic Diseases, vol. 51, no. 10, pp. 1107–1110, 1992. View at Scopus
  49. P. A. Dieppe, J. Cushnaghan, and L. Shepstone, “The Bristol “OA500” Study: progression of osteoarthritis (OA) over 3 years and the relationship between clinical and radiographic changes at the knee joint,” Osteoarthritis and Cartilage, vol. 5, no. 2, pp. 87–97, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Dougados, A. Gueguen, M. Nguyen et al., “Longitudinal radiologic evaluation of osteoarthritis of the knee,” Journal of Rheumatology, vol. 19, no. 3, pp. 378–384, 1992. View at Scopus
  51. M. Dougados, A. Gueguen, M. Nguyen et al., “Radiological progression of hip osteoarthritis: definition, risk factors and correlations with clinical status,” Annals of the Rheumatic Diseases, vol. 55, no. 6, pp. 356–362, 1996. View at Scopus
  52. L. S. Lohmander, “What can we do about osteoarthritis?” Arthritis Research, vol. 2, no. 2, pp. 95–100, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. S. O’Reily and M. Doherty, “Signs, symptoms, and laboratory tests,” in Osteoarthritis, K. D. Brandt, M. Doherty, and L. S. Lohmander, Eds., pp. 74–84, Oxford University Press, Oxford, UK, 1998.
  54. X. Ayral, E. H. Pickering, T. G. Woodworth, N. Mackillop, and M. Dougados, “Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients,” Osteoarthritis and Cartilage, vol. 13, no. 5, pp. 361–367, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. M. A. D'Agostino, P. Conaghan, M. Le Bars et al., “EULAR report on the use of ultrasonography in painful knee osteoarthritis. Part 1: prevalence of inflammation in osteoarthritis,” Annals of the Rheumatic Diseases, vol. 64, no. 12, pp. 1703–1709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. P. G. Conaghan, M. A. D'Agostino, M. Le Bars et al., “Clinical and ultrasonographic predictors of joint replacement for knee osteoarthritis: results from a large, 3-year, prospective EULAR study,” Annals of the Rheumatic Diseases, vol. 69, no. 4, pp. 644–647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. P. P. Cheung, L. Gossec, and M. Dougados, “What are the best markers for disease progression in osteoarthritis (OA)?” Best Practice and Research, vol. 24, no. 1, pp. 81–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Shibakawa, H. Aoki, K. Masuko-Hongo et al., “Presence of pannus-like tissue on osteoarthritic cartilage and its histological character,” Osteoarthritis and Cartilage, vol. 11, no. 2, pp. 133–140, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Kristoffersen, S. Torp-Pedersen, L. Terslev et al., “Indications of inflammation visualized by ultrasound in osteoarthritis of the knee,” Acta Radiologica, vol. 47, no. 3, pp. 281–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Chevalier, T. Conrozier, and P. Richette, “Desperately looking for the right target in osteoarthritis: the anti-IL-1 strategy,” Arthritis Research & Therapy, vol. 13, no. 4, p. 124, 2011.
  61. C. R. Scanzello, B. McKeon, B. H. Swaim et al., “Synovial inflammation in patients undergoing arthroscopic meniscectomy: molecular characterization and relationship to symptoms,” Arthritis and Rheumatism, vol. 63, no. 2, pp. 391–400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. E. V. Tchetina, K. Maslova, N. Demin, and V. A. Myakotkin, “Association of bone loss with upregulation of survival-related genes and concomitant downregulation of mammalian target of rapamycin (mTOR) and osteoblast differentiation-related genes in peripheral blood of osteoporotic postmenopausal women,” Annals of Rheumatic Diseases, vol. 68, supplement 3, p. 491, 2009.
  63. F. Eckstein, S. Cotofana, W. Wirth et al., “Greater rates of cartilage loss in painful knees than in pain-free knees after adjustment for radiographic disease stage: data from the osteoarthritis initiative,” Arthritis and Rheumatism, vol. 63, no. 8, pp. 2257–2267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Ishijima, T. Watari, K. Naito et al., “Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis,” Arthritis Research and Therapy, vol. 13, no. 1, article R22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Levinger, M. K. Caldow, J. A. Feller, et al., “Association between skeletal muscle inflammatory markers and walking pattern in people with knee osteoarthritis,” Arthritis Care & Research, vol. 63, no. 12, pp. 1715–1721, 2011.
  66. J. N. Belo, M. Y. Berger, M. Reijman, B. W. Koes, and S. M. A. Bierma-Zeinstra, “Prognostic factors of progression of osteoarthritis of the knee: a systematic review of observational studies,” Arthritis Care and Research, vol. 57, no. 1, pp. 13–26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Bedson and P. R. Croft, “The discordance between clinical and radiographic knee osteoarthritis: a systematic search and summary of the literature,” BMC Musculoskeletal Disorders, vol. 9, article 116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Gossec, S. Paternotte, J. F. Maillefert et al., “The role of pain and functional impairment in the decision to recommend total joint replacement in hip and knee osteoarthritis: an international cross-sectional study of 1909 patients. Report of the OARSI-OMERACT Task Force on total joint replacement,” Osteoarthritis and Cartilage, vol. 19, no. 2, pp. 147–154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. B. Moretti, A. Notarnicola, L. Moretti, et al., “I-ONE therapy in patients undergoing total knee arthroplasty: a prospective, randomized and controlled study,” BMC Musculoskeletal Disorders, vol. 13, article 88, 2012.
  70. J. J. Lum, R. J. DeBerardinis, and C. B. Thompson, “Autophagy in metazoans: cell survival in the land of plenty,” Nature Reviews Molecular Cell Biology, vol. 6, no. 6, pp. 439–448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. K. von der Mark, T. Kirsch, A. Nerlich et al., “Type X collagen synthesis in human osteoarthritic cartilage: indication of chondrocyte hypertrophy,” Arthritis and Rheumatism, vol. 35, no. 7, pp. 806–811, 1992. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Girkontaite, S. Frischholz, P. Lammi et al., “Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies,” Matrix Biology, vol. 15, no. 4, pp. 231–238, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Dreier, “Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders,” Arthritis Research and Therapy, vol. 12, no. 5, article 216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. D. Phander, B. Swoboda, and T. Kirsch, “Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes,” American Journal of Pathology, vol. 159, no. 5, pp. 1777–1783, 2001. View at Scopus
  75. H. Drissi, M. Zuscik, R. Rosier, and R. O'Keefe, “Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis,” Molecular Aspects of Medicine, vol. 26, no. 3, pp. 169–179, 2005. View at Publisher · View at Google Scholar · View at Scopus