About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2013 (2013), Article ID 563268, 13 pages
http://dx.doi.org/10.1155/2013/563268
Review Article

The Application of Optical Coherence Tomography in Musculoskeletal Disease

1Center for Optical Coherence Tomography and Optical Physics, Department of Orthopedic Surgery, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA
2Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA

Received 10 August 2012; Accepted 15 December 2012

Academic Editor: Changhai Ding

Copyright © 2013 Christopher Rashidifard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Bolen, J. Sniezek, K. Theis, et al., “Racial/ethnic differences in the prevalence and impact of doctordiagnosed arthritis—United States, 2002,” Morbidity and Mortality Weekly Report, vol. 54, pp. 119–123, 2005.
  2. J. Hootman, J. Bolen, C. Helmick, and G. Langmaid, “Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation,” Morbidity and Mortality Weekly Report, vol. 55, no. 40, pp. 1089–1092, 2006.
  3. L. S. Oh, B. R. Wolf, M. P. Hall, B. A. Levy, and R. G. Marx, “Indications for rotator cuff repair: a systematic review,” Clinical Orthopaedics and Related Research, no. 455, pp. 52–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Sacks, C. G. Helmick, Y. H. Luo, N. T. Ilowite, and S. Bowyer, “Prevalence of and annual ambulatory health care visits for pediatric arthritis and other rheumatologic conditions in the United States in 2001–2004,” Arthritis Care and Research, vol. 57, no. 8, pp. 1439–1445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Hootman and C. G. Helmick, “Projections of US prevalence of arthritis and associated activity limitations,” Arthritis and Rheumatism, vol. 54, no. 1, pp. 226–229, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Herrmann, C. Pitris, B. E. Bouma et al., “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” Journal of Rheumatology, vol. 26, no. 3, pp. 627–635, 1999. View at Scopus
  7. W. Drexler, D. Stamper, C. Jesser et al., “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” Journal of Rheumatology, vol. 28, no. 6, pp. 1311–1318, 2001. View at Scopus
  8. X. Li, S. D. Martin, C. Pitris, et al., “High-resolution optical coherence tomography imaging of osteoarthritic cartilage during open knee surgery,” Arthritis Research & Therapy, vol. 7, pp. R318–R323, 2005.
  9. K. Zheng, S. D. Martin, C. H. Rashidifard, B. Liu, and M. E. Brezinski, “In vivo micron-scale arthroscopic imaging of human knee osteoarthritis with optical coherence tomography: comparison with magnetic resonance imaging and arthroscopy,” American Journal of Orthopedics, vol. 39, no. 3, pp. 122–125, 2010. View at Scopus
  10. S. D. Martin, N. A. Patel, S. B. Adams et al., “New technology for assessing microstructural components of tendons and ligaments,” International Orthopaedics, vol. 27, no. 3, pp. 184–189, 2003. View at Scopus
  11. C. Rashidifard, S. D. Martin, N. Kumar, et al., “Single detector polarization-sensitive optical coherence tomography for assessment of rotator cuff tendon integrity,” American Journal of Orthodontics, vol. 41, no. 8, pp. 351–357, 2012.
  12. S. B. Adams, P. R. Herz, D. L. Stamper et al., “High-resoution imaging of progressive articular cartilage degeneration,” Journal of Orthopaedic Research, vol. 24, no. 4, pp. 708–715, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Vercollone, C. Rashidifard, S. Zan, et al., “New technological approach to study rotator cuff pathology,” Journal of Musculoskeletal Research, vol. 15, no. 1, p. 1250010, 2012.
  14. M. E. Brezinski, Optical Coherence Tomography: Principles and Applications, Academic Press, Burlington, Mass, USA, 2006.
  15. G. J. Tearney, M. E. Brezinski, B. E. Bouma et al., “In vivo endoscopic optical biopsy with optical coherence tomography,” Science, vol. 276, no. 5321, pp. 2037–2039, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Fujimoto, and M. E. Brezinski, “Foward-scanning instruments for optical coherence tomographic imaging,” Optics Letters, vol. 21, no. 7, pp. 543–545, 1998.
  17. “LightLab Imaging, Westford, MA,” http://www.sjm.com.
  18. H. J. Mankin, H. Dorfman, L. Lippiello, and A. Zarins, “Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data,” Journal of Bone and Joint Surgery A, vol. 53, no. 3, pp. 523–537, 1971. View at Scopus
  19. A. Hulth, L. Lindberg, and H. Telhag, “Mitosis in human osteoarthritic cartilage,” Clinical Orthopaedics and Related Research, vol. 84, pp. 197–199, 1972. View at Scopus
  20. J. Ryu, B. V. Treadwell, and H. J. Mankin, “Biochemical and metabolic abnormalities in normal and osteoarthritic human articular cartilage,” Arthritis and Rheumatism, vol. 27, no. 1, pp. 49–57, 1984. View at Scopus
  21. L. Lippiello, D. Hall, and H. J. Mankin, “Collagen synthesis in normal and osteoarthritic human cartilage,” Journal of Clinical Investigation, vol. 59, no. 4, pp. 593–600, 1977. View at Scopus
  22. K. D. Brandt, “Enhanced extractability of articular cartilage proteoglycans in osteoarthrosis,” Biochemical Journal, vol. 143, no. 2, pp. 475–478, 1974. View at Scopus
  23. R. D. Altman, J. C. Pita, and D. S. Howell, “Degradation of proteoglycans in human osteoarthritic cartilage,” Arthritis and Rheumatism, vol. 16, no. 2, pp. 179–185, 1973. View at Scopus
  24. V. C. Mow, A. Ratcliffe, and A. R. Poole, “Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures,” Biomaterials, vol. 13, no. 2, pp. 67–97, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Heinegard, S. Inerot, J. Wieslander, and G. Lindblad, “A method for the quantification of cartilage proteoglycan structures liberated to the synovial fluid during developing degenerative joint disease,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 45, no. 5, pp. 421–427, 1985. View at Scopus
  26. J. Witter, P. J. Roughley, and C. Webber, “The immunologic detection and characterization of cartilage proteoglycan degradation products in synovial fluids of patients with arthritis,” Arthritis and Rheumatism, vol. 30, no. 5, pp. 519–529, 1987. View at Scopus
  27. H. S. Cheung, L. M. Ryan, F. Kozin, and D. J. McCarty, “Identification of collagen subtypes in synovial fluid sediments from arthritic patients,” American Journal of Medicine, vol. 68, no. 1, pp. 73–79, 1980. View at Scopus
  28. R. Kitridou, D. J. McCarty, D. J. Prockop, and K. Hummeler, “Identification of collagen in synovial fluid,” Arthritis and Rheumatism, vol. 12, no. 6, pp. 580–588, 1969. View at Scopus
  29. W. D. Fisher, B. E. Golds, and M. van der Rest, “Stimulation of collagenase secretion from rheumatoid synovial tissue by human collagen peptides. Evidence of autoimmunity,” Journal of Bone and Joint Surgery A, vol. 64, no. 4, pp. 546–557, 1982. View at Scopus
  30. H. M. Hanauske-Abel, B. F. Pontz, and H. U. Schorlemmer, “Cartilage specific collagen activates macrophages and the alternative pathway of complement: evidence for an immunopathogenic concept of rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 41, no. 2, pp. 168–176, 1982. View at Scopus
  31. M. Goto, S. Yoshinoya, T. Miyamoto et al., “Stimulation of interleukin-1α and interleukin-1β release from human monocytes by cyanogen bromide peptides of type II collagen,” Arthritis and Rheumatism, vol. 31, no. 12, pp. 1508–1514, 1988. View at Scopus
  32. H. J. Mankin and K. D. Brandt, “Biochemistry and metabolism of articular cartilage in osteoarthritis,” in Osteoarthritis: Diagnosis and Management, R. W. Moskowitz, D. S. Howell, V. C. Goldberg, and H. J. Mankin, Eds., p. 109, WB Saunders, Philadelphia, Pa, USA, 2nd edition, 1992.
  33. P. D. Byer, M. T. Baylis, A. Maroudas, et al., “Hypothesizing about joints,” in Studies in Joint Diseases 2, A. Maroudas and E. J. Holborow, Eds., p. 241, Pitman, London, UK, 1983.
  34. S. A. Jimenez, L. Ala-Kokko, N. Ahmad, et al., “Type II collage gene mutations in familial osteoarthritis,” in Articular Cartilage and Osteoarthritis (Workshop), K. E. Kuettner, R. Schleyerbach, J. G. Peyron, and V. C. Hascall, Eds., p. 167, Raven Press, New York, NY, USA, 1992.
  35. J. Mizrahi, A. Maroudas, and Y. Lanir, “The 'instantaneous' deformation of cartilage: effects of collagen fiber orientation and osmotic stress,” Biorheology, vol. 23, no. 4, pp. 311–330, 1986. View at Scopus
  36. J. P. G. Urban, “The chondrocyte: a cell under pressure,” British Journal of Rheumatology, vol. 33, no. 10, pp. 901–908, 1994. View at Scopus
  37. D. T. Felson, C. E. Chaisson, C. L. Hill et al., “The association of bone marrow lesions with pain in knee osteoarthritis,” Annals of Internal Medicine, vol. 134, no. 7, pp. 541–549, 2001. View at Scopus
  38. G. H. Lo, D. J. Hunter, Y. Zhang et al., “Bone marrow lesions in the knee are associated with increased local bone density,” Arthritis and Rheumatism, vol. 52, no. 9, pp. 2814–2821, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Liu, M. Harman, S. Giattina et al., “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Applied Optics, vol. 45, no. 18, pp. 4464–4479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. N. A. Patel, D. L. Stamper, and S. Plummer, “Spectroscopic assessment of osteoarthritic cartilage with optical coherence tomography,” Arthritis and Rheumatism, vol. 46, no. 9, pp. S497–S497, 2002.
  41. D. Huang, E. A. Swanson, C. P. Lin et al., “Optical coherence tomography,” Science, vol. 254, no. 5035, pp. 1178–1181, 1991. View at Scopus
  42. L. C. U. Junqueira, G. Bignolas, and R. R. Brentani, “Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections,” Histochemical Journal, vol. 11, no. 4, pp. 447–455, 1979. View at Scopus
  43. L. C. U. Junqueira, M. T. Assis Figueiredo, H. Torloni, and G. S. Montes, “Differential histologic diagnosis of osteoid. A study on human osteosarcoma collagen by the histochemical picrosirius-polarization method,” Journal of Pathology, vol. 148, no. 2, pp. 189–196, 1986. View at Scopus
  44. B. Liu, M. Harman, S. Giattina et al., “Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography,” Applied Optics, vol. 45, no. 18, pp. 4464–4479, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Liu, C. Vercollone, and M. E. Brezinski, “Towards improved collagen assessment: polarization-sensitive optical coherence tomography with tailored reference arm polarization,” International Journal of Biomedical Imaging, vol. 2012, Article ID 892680, 2012.
  46. K. Yamaguchi, K. Ditsios, W. D. Middleton, C. F. Hildebolt, L. M. Galatz, and S. A. Teefey, “The demographic and morphological features of rotator cuff disease: a comparison of asymptomatic and symptomatic shoulders,” Journal of Bone and Joint Surgery A, vol. 88, no. 8, pp. 1699–1704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Milgrom, M. Schaffler, S. Gilbert, and M. Van Holsbeeck, “Rotator-cuff changes in asymptomatic adults. The effect of age, hand dominance and gender,” Journal of Bone and Joint Surgery B, vol. 77, no. 2, pp. 296–298, 1995. View at Scopus
  48. D. G. Duckworth, K. L. Smith, B. Campbell, and F. A. Matsen, “Self-assessment questionnaires document substantial variability in the clinical expression of rotator cuff tears,” Journal of Shoulder and Elbow Surgery, vol. 8, no. 4, pp. 330–333, 1999. View at Scopus
  49. M. Zanetti, B. Jost, J. Hodler, and C. Gerber, “MR imaging after rotator cuff repair: full-thickness defects and bursitis-like subacromial abnormalities in asymptomatic subjects,” Skeletal Radiology, vol. 29, no. 6, pp. 314–319, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Ellman, “Surgical treatment of rotator cuff rupture,” in Surgical Disorders of the Shoulder, M. S. Watson, Ed., pp. 283–291, Churchill Livingstone Company, London, UK, 1991.
  51. H. Sano, H. Ishii, G. Trudel, and H. K. Uhthoff, “Histologic evidence of degeneration at the insertion of 3 rotator cuff tendons: a comparative study with human cadaveric shoulders,” Journal of Shoulder and Elbow Surgery, vol. 8, no. 6, pp. 574–579, 1999. View at Scopus
  52. H. K. Uhthoff and H. Sano, “Pathology of failure of the rotator cuff tendon,” Orthopedic Clinics of North America, vol. 28, no. 1, pp. 31–41, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Liem, S. Lichtenberg, P. Magosch, and P. Habermeyer, “Magnetic resonance imaging of arthroscopic supraspinatus tendon repair,” Journal of Bone and Joint Surgery A, vol. 89, no. 8, pp. 1770–1776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. L. M. Galatz, C. M. Ball, S. A. Teefey, W. D. Middleton, and K. Yamaguchi, “The outcome and repair integrity of completely arthroscopically repaired large and massive rotator cuff tears,” Journal of Bone and Joint Surgery A, vol. 86, no. 2, pp. 219–224, 2004. View at Scopus
  55. L. Lafosse, R. Brozska, B. Toussaint, and R. Gobezie, “The outcome and structural integrity of arthroscopic rotator cuff repair with use of the double-row suture anchor technique,” Journal of Bone and Joint Surgery A, vol. 89, no. 7, pp. 1533–1541, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Wakitani, T. Goto, S. J. Pineda et al., “Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage,” Journal of Bone and Joint Surgery A, vol. 76, no. 4, pp. 579–592, 1994. View at Scopus
  57. W. G. Wang, S. Q. Lou, X. D. Ju, K. Xia, and J. H. Xia, “In vitro chondrogenesis of human bone marrow-derived mesenchymal progenitor cells in monolayer culture: activation by transfection with TGF-β2,” Tissue and Cell, vol. 35, no. 1, pp. 69–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Koike, G. Trudel, and H. K. Uhthoff, “Formation of a new enthesis after attachment of the supraspinatus tendon: a quantitative histologic study in rabbits,” Journal of Orthopaedic Research, vol. 23, no. 6, pp. 1433–1440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. M. J. Silva, T. M. Ritty, K. T. Ditsios, and et.al., “Morphological, cellular, and biomechanical changes in flexor tendon following insertion site injury,” Transactions of Orthopaedic Res Society, vol. 28, article 797, 2003.
  60. P. O. Bagnaninchi, Y. Yang, M. Bonesi et al., “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Physics in Medicine and Biology, vol. 55, no. 13, pp. 3777–3787, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Cernohorsky, D. M. de Bruin, M. van Herk, et al., “In-situ imaging of articular cartilage of the first carpometacarpal joint using co-registered optical coherence tomography and computed tomography,” Journal of Biomedical Optics, vol. 17, no. 6, Article ID 060501, 2012.
  62. D. Aletaha, T. Neogi, and A. J. Silman, “2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative,” Annals of the Rheumatic Diseases, vol. 69, no. 10, article 1580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Suresh, “Recent advances in rheumatoid arthritis,” Postgraduate Medical Journal, vol. 86, no. 1014, pp. 243–250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Landewé, “Predictive markers in rapidly progressing rheumatoid arthritis,” Journal of Rheumatology, vol. 34, no. 80, pp. 8–15, 2007. View at Scopus
  65. R. F. von Vollenohower, “Treatment of rheumatoid arthritis: state of the art,” Nature Reviews Rheumatology, vol. 5, no. 10, pp. 531–541, 2009.
  66. K. G. Saag, G. G. Teng, N. M. Patkar, et al., “Recommendations for the use of nonbiologic and biologic disease modifying anti-rheumatic drugs in RA,” Arthritis & Rheumatism, vol. 59, pp. 762–784, 2008.
  67. K. Zheng, M. A. Rupnik, B. Liu, and M. E. Brezinski, “Three dimensional oct in the engineering of tissue constructs: a potentially powerful tool for assessing optimal scaffold structure,” Open Tissue Engineering and Regenerative Medicine Journal, vol. 2, pp. 8–13, 2009.
  68. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart, vol. 90, no. 5, pp. 556–562, 2004. View at Scopus
  69. J. Rogowska, N. Patel, S. Plummer, and M. E. Brezinski, “Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties,” British Journal of Radiology, vol. 79, no. 945, pp. 707–711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. M. E. Brezinski and B. Liu, “Nonlocal quantum macroscopic superposition in a high-thermal low-purity state,” Physical Review A, vol. 78, no. 6, Article ID 063824, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. M. E. Brezinski, “Nonlocal quantum correlations: beyond entanglement,” In press, http://arxiv.org/abs/1209.1081.