About this Journal Submit a Manuscript Table of Contents
Arthritis
Volume 2014 (2014), Article ID 159089, 8 pages
http://dx.doi.org/10.1155/2014/159089
Review Article

Zingiber officinale: A Potential Plant against Rheumatoid Arthritis

1Department of Pharmacy, University of Development Alternative, Dhanmondi, Dhaka 1209, Bangladesh
2Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh

Received 4 March 2014; Revised 28 April 2014; Accepted 13 May 2014; Published 27 May 2014

Academic Editor: Shinichi Kawai

Copyright © 2014 Abdullah Al-Nahain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mayada, E. Dina, S. Marwa, and E. H. Wessam, “Serum leptin levels in rheumatoid arthritis and relationship with disease activity,” The Egyptian Rheumatologist, vol. 36, no. 1, pp. 1–5, 2014.
  2. G. S. Samar, E. K. Tarek, E. H. Ghada, and M. Waleed, “Significance of serum levels of angiopoietin-2 and its relationship to Doppler ultrasonographic findings in rheumatoid arthritis patients,” The Egyptian Rheumatologist, vol. 36, no. 1, pp. 15–20, 2014.
  3. R. Baron, “Polarity and membrane transport in osteoclasts,” Connective Tissue Research, vol. 20, no. 1–4, pp. 109–120, 1989. View at Scopus
  4. R. H. Straub and J. R. Kalden, “Stress of different types increases the proinflammatory load in rheumatoid arthritis,” Arthritis Research and Therapy, vol. 11, no. 3, article 114, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. I. B. McInnes and G. Schett, “The pathogenesis of rheumatoid arthritis,” The New England Journal of Medicine, vol. 365, no. 23, pp. 2205–2219, 2011. View at Scopus
  6. E. H. S. Choy and G. S. Panayi, “Cytokine pathways and joint inflamation in rheumatoid arthritis,” The New England Journal of Medicine, vol. 344, no. 12, pp. 907–916, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. J. C. Roldán, J. Amaya-Amaya, J. Castellanos-de la Hoz et al., “Autoimmune thyroid disease in rheumatoid arthritis: a global perspective,” Arthritis, vol. 2012, Article ID 864907, 15 pages, 2012. View at Publisher · View at Google Scholar
  8. J. Cadena, S. Vinaccia, A. Pérez, M. I. Rico, R. Hinojosa, and J.-M. Anaya, “The impact of disease activity on the quality of life, mental health status, and family dysfunction in colombian patients with rheumatoid arthritis,” Journal of Clinical Rheumatology, vol. 9, no. 3, pp. 142–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Rojas-Villarraga, J. Bayona, N. Zuluaga, S. Mejia, M.-E. Hincapie, and J.-M. Anaya, “The impact of rheumatoid foot on disability in Colombian patients with rheumatoid arthritis,” BMC Musculoskeletal Disorders, vol. 10, no. 1, article 67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. N. DeMaria, “Relative risk of cardiovascular events in patients with rheumatoid arthritis,” The American Journal of Cardiology, vol. 89, no. 6, pp. 33–38, 2002. View at Scopus
  11. Y. Alamanos and A. A. Drosos, “Epidemiology of adult rheumatoid arthritis,” Autoimmunity Reviews, vol. 4, no. 3, pp. 130–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. T. K. Kvien, T. Uhlig, S. Ødegård, and M. S. Heiberg, “Epidemiological aspects of rheumatoid arthritis: the sex ratio,” Annals of the New York Academy of Sciences, vol. 1069, pp. 212–222, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Kirwan, “The effect of glucocorticoids on joint destruction in rheumatoid arthritis,” The New England Journal of Medicine, vol. 333, no. 3, pp. 142–146, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. S. S. Lim, D. L. Conn, M. T. Galloway et al., “The use of low-dose prednisone in the management of rheumatoid arthritis,” Bulletin on the Rheumatic Diseases, vol. 50, no. 12, pp. 1–4, 2001. View at Scopus
  15. A. Kavanaugh, “Current treatments for rheumatoid arthritis,” The American Journal of Orthopedics, vol. 36, no. 3, pp. 4–7, 2007. View at Scopus
  16. M. C. Allison, A. G. Howatson, C. J. Torrance, F. D. Lee, and R. I. Russell, “Gastrointestinal damage associated with the use of nonsteroidal antiinflammatory drugs,” The New England Journal of Medicine, vol. 327, no. 11, pp. 749–754, 1992. View at Scopus
  17. C. O. Okoli, P. A. Akah, and S. V. Nwafor, “Anti-inflammatory activity of plants,” Journal of Natural Remedies, vol. 3, no. 1, pp. 1–30, 2003. View at Scopus
  18. D. T. Cowan, “Chronic non-cancer pain in older people: current evidence for prescribing,” British Journal of Community Nursing, vol. 7, no. 8, pp. 420–425, 2002. View at Scopus
  19. D. T. Cowan, “Pandemonium over painkillers persists,” British Journal of Community Nursing, vol. 12, no. 4, pp. 166–169, 2007. View at Scopus
  20. K. Eamlamnam, S. Patumraj, N. Visedopas, and D. Thong-Ngam, “Effects of Aloe vera and sucralfate on gastric microcirculatory changes, cytokine levels and gastric ulcer healing in rats,” World Journal of Gastroenterology, vol. 12, no. 13, pp. 2034–2039, 2006. View at Scopus
  21. K. L. Soeken, S. A. Miller, and E. Ernst, “Herbal medicines for the treatment of rheumatoid arthritis: a systematic review,” Rheumatology, vol. 42, no. 5, pp. 652–659, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. G. J. Visser, L. Peters, and J. J. Rasker, “Rheumatologists and their patients who seek alternative care: an agreement to disagree,” British Journal of Rheumatology, vol. 31, no. 7, pp. 485–490, 1992. View at Scopus
  23. J. K. Rao, K. Mihaliak, K. Kroenke, J. Bradley, W. M. Tierney, and M. Weinberger, “Use of complementary therapies for arthritis among patients of rheumatologists,” Annals of Internal Medicine, vol. 131, no. 6, pp. 409–416, 1999. View at Scopus
  24. J. D. Phillipson, “Phytochemistry and medicinal plants,” Phytochemistry, vol. 56, no. 3, pp. 237–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Grindlay and T. Reynolds, “The Aloe vera phenomenon: a review of the properties and modern uses of the leaf parenchyma gel,” Journal of Ethnopharmacology, vol. 16, no. 2-3, pp. 117–151, 1986. View at Scopus
  26. J. M. Kong, N. K. Goh, L. S. Chia, and T. F. Chia, “Recent advances in traditional plant drugs and orchids,” Acta Pharmacologica Sinica, vol. 24, no. 1, pp. 7–21, 2003. View at Scopus
  27. WHO, Traditional Medicine Strategy Launched, vol. 80 of 610, WHO News, Geneva, Switzerland, 2002.
  28. S. Benowitz, “As war on cancer hits 25-year mark, scientists see progress, challenges,” Scientist, vol. 10, no. 24, 1996.
  29. N. Mascolo, R. Jain, S. C. Jain, and F. Capasso, “Ethnopharmacologic investigation of ginger (Zingiber officinale),” Journal of Ethnopharmacology, vol. 27, no. 1-2, pp. 129–140, 1989. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Mustafa and K. C. Srivastava, “Ginger (Zingiber officinale) in migraine headache,” Journal of Ethnopharmacology, vol. 29, no. 3, pp. 267–273, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Feldmann and L. Steinman, “Design of effective immunotherapy for human autoimmunity,” Nature, vol. 435, no. 7042, pp. 612–619, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. W. B. van den Berg and P. Miossec, “IL-17 as a future therapeutic target for rheumatoid arthritis,” Nature Reviews Rheumatology, vol. 5, no. 10, pp. 549–553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Miossec, “Interleukin-17 in rheumatoid arthritis: if T cells were to contribute to inflammation and destruction through synergy,” Arthritis and Rheumatism, vol. 48, no. 3, pp. 594–601, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. F. M. Brennan and I. B. McInnes, “Evidence that cytokines play a role in rheumatoid arthritis,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3537–3545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Tanaka, “Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways,” World Journal of Orthopedics, vol. 4, no. 1, pp. 1–6, 2013.
  36. L. E. Theill, W. J. Boyle, and J. M. Penninger, “RANK-L and RANK: T cells, bone loss, and mammalian evolution,” Annual Review of Immunology, vol. 20, pp. 795–823, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Lubberts and W. B. van den Berg, “Cytokines in the pathogenesis of rheumatoid arthritis and collagen-induced arthritis,” Advances in Experimental Medicine and Biology, vol. 52, pp. 194–202, 2003. View at Scopus
  38. S. Mathis, V. R. Jala, and B. Haribabu, “Role of leukotriene B4 receptors in rheumatoid arthritis,” Autoimmunity Reviews, vol. 7, no. 1, pp. 12–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. B. White, “Ginger: an overview,” The American Family Physician, vol. 75, no. 11, pp. 1689–1691, 2007. View at Scopus
  40. S. Kumar, K. Saxena, U. N. Singh, and R. Saxena, “Anti-inflammatory action of ginger: a critical review in anemia of inflammation and its future aspects,” International Journal of Herbal Medicine, vol. 1, no. 4, pp. 16–20, 2013.
  41. R. D. Altman and K. C. Marcussen, “Effects of a ginger extract on knee pain in patients with osteoarthritis,” Arthritisam and Rheumatism, vol. 44, no. 11, pp. 2531–2538, 2001.
  42. T. Feng, J. Su, Z.-H. Ding et al., “Chemical constituents and their bioactivities of “tongling White Ginger” (Zingiber officinale),” Journal of Agricultural and Food Chemistry, vol. 59, no. 21, pp. 11690–11695, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Thomson, K. K. Al-Qattan, S. M. Al-Sawan, M. A. Alnaqeeb, I. Khan, and M. Ali, “The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 67, no. 6, pp. 475–478, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Kiuchi, M. Shibuya, and U. Sankawa, “Inhibitors of prostaglandin biosynthesis from ginger,” Chemical and Pharmaceutical Bulletin, vol. 30, no. 2, pp. 754–757, 1982. View at Scopus
  45. F. Kiuchi, S. Iwakami, M. Shibuya, F. Hanaoka, and U. Sankawa, “Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids,” Chemical and Pharmaceutical Bulletin, vol. 40, no. 2, pp. 387–391, 1992. View at Scopus
  46. S. Ribel-Madsen, E. M. Bartels, A. Stockmarr et al., “A synoviocyte model for osteoarthritis and rheumatoid arthritis: response to ibuprofen, betamethasone, and ginger extract—a cross-sectional in vitro study,” Arthritis, vol. 2012, Article ID 505842, 9 pages.
  47. D. L. Flynn, M. F. Rafferty, and A. M. Boctor, “Inhibition of human neutrophil 5-lipoxygenase activity by gingerdione, shogaol, capsaicin and related pungent compounds,” Prostaglandins Leukotrienes and Medicine, vol. 24, no. 2-3, pp. 195–198, 1986. View at Scopus
  48. H. Shimoda, S.-J. Shan, J. Tanaka et al., “Anti-inflammatory properties of red ginger (Zingiber officinale var. Rubra) extract and suppression of nitric oxide production by its constituents,” Journal of Medicinal Food, vol. 13, no. 1, pp. 156–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. H.-Y. Young, Y.-L. Luo, H.-Y. Cheng, W.-C. Hsieh, J.-C. Liao, and W.-H. Peng, “Analgesic and anti-inflammatory activities of [6]-gingerol,” Journal of Ethnopharmacology, vol. 96, no. 1-2, pp. 207–210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. J. A. O. Ojewole, “Analgesic, antiinflammatory and hypoglycaemic effects of ethanol extract of Zingiber officinale (Roscoe) rhizomes (Zingiberaceae) in mice and rats,” Phytotherapy Research, vol. 20, no. 9, pp. 764–772, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. J. L. Funk, J. B. Frye, J. N. Oyarzo, and B. N. Timmermann, “Comparative effects of two gingerol-containing Zingiber officinale extracts on experimental Rheumatoid arthritis,” Journal of Natural Products, vol. 72, no. 3, pp. 403–407, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. J. N. Sharma, K. C. Srivastava, and E. K. Gan, “Suppressive effects of eugenol and ginger oil on arthritic rats,” Pharmacology, vol. 49, no. 5, pp. 314–318, 1994. View at Scopus
  53. K. C. Srivastava and T. Mustafa, “Ginger (Zingiber officinale) in rheumatism and musculoskeletal disorders,” Medical Hypotheses, vol. 39, no. 4, pp. 342–348, 1992. View at Publisher · View at Google Scholar · View at Scopus
  54. R. B. van Breemen, Y. Tao, and W. Li, “Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale),” Fitoterapia, vol. 82, no. 1, pp. 38–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Grzanna, L. Lindmark, and C. G. Frondoza, “Ginger—an herbal medicinal product with broad anti-inflammatory actions,” Journal of Medicinal Food, vol. 8, no. 2, pp. 125–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Nurtjahja-Tjendraputra, A. J. Ammit, B. D. Roufogalis, V. H. Tran, and C. C. Duke, “Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger,” Thrombosis Research, vol. 111, no. 4-5, pp. 259–265, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Tripathi, D. Bruch, and D. S. Kittur, “Ginger extract inhibits LPS induced macrophage activation and function,” BMC Complementary and Alternative Medicine, vol. 8, no. 1, article 1, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. P. V. Phan, A. Sohrabi, A. Polotsky, D. S. Hungerford, L. Lindmark, and C. G. Frondoza, “Ginger extract components suppress induction of chemokine expression in human synoviocytes,” Journal of Alternative and Complementary Medicine, vol. 11, no. 1, pp. 149–154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. C. Lantz, G. J. Chen, M. Sarihan, A. M. Sólyom, S. D. Jolad, and B. N. Timmermann, “The effect of extracts from ginger rhizome on inflammatory mediator production,” Phytomedicine, vol. 14, no. 2-3, pp. 123–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Haghighi, A. Khalvat, T. Toliat, and S. Jallaei, “Comparing the effects of ginger (Zingiber officinale) extract and ibuprofen on patients with osteoarthritis,” Archives of Iranian Medicine, vol. 8, no. 4, pp. 267–271, 2005. View at Scopus
  61. M. Yoshikawa, S. Hatakeyama, N. Chatani, Y. Nishino, and J. Yamahara, “Qualitative and quantitative analysis of bioactive principles in Zingiberis Rhizoma by means of high performance liquid chromatography and gas liquid chromatography. On the evaluation of Zingiberis Rhizoma and chemical change of constituents during Zingiberis Rhizoma processing,” Yakugaku Zasshi, vol. 113, no. 4, pp. 307–315, 1993. View at Scopus
  62. E. Tjendraputra, V. H. Tran, D. Liu-Brennan, B. D. Roufogalis, and C. C. Duke, “Effect of ginger constituents and synthetic analogues on cyclooxygenase-2 enzyme in intact cells,” Bioorganic Chemistry, vol. 29, no. 3, pp. 156–163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. M. H. Pan, M. C. Hsieh, P. C. Hsu et al., “6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages,” Molecular Nutrition and Food Research, vol. 52, no. 12, pp. 1467–1477, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. M. K. Eun, J. K. Hye, S. Kim et al., “Modulation of macrophage functions by compounds isolated from Zingiber officinale,” Planta Medica, vol. 75, no. 2, pp. 148–151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. S. J. Pragasam, S. Kumar, M. Bhoumik, E. P. Sabina, and M. Rasool, “6-Gingerol, an active ingredient of ginger suppresses monosodium ureate crystal-induced inflammation: an in vivo and in vitro evaluation,” Annals of Biological Research, vol. 2, no. 3, pp. 200–208, 2011.
  66. C. Ospelt and S. Gay, “TLRs and chronic inflammation,” International Journal of Biochemistry and Cell Biology, vol. 42, no. 4, pp. 495–505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Shen, B. M. Tesar, W. E. Walker, and D. R. Goldstein, “Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation,” Journal of Immunology, vol. 181, no. 3, pp. 1849–1858, 2008. View at Scopus
  68. P. A. Baeuerle and D. Baltimore, “IκB: a specific inhibitor of the NF-κB transcription factor,” Science, vol. 242, no. 4878, pp. 540–546, 1988. View at Scopus
  69. J. DiDonato, F. Mercurio, C. Rosette et al., “Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation,” Molecular and Cellular Biology, vol. 16, no. 4, pp. 1295–1304, 1996. View at Scopus
  70. M. Karin and Y. Ben-Neriah, “Phosphorylation meets ubiquitination: the control of NF-κB activity,” Annual Review of Immunology, vol. 18, pp. 621–663, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. B. Tian and A. R. Brasier, “Identification of a nuclear factor kappa B-dependent gene network,” Recent Progress in Hormone Research, vol. 58, pp. 95–130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Y. Lee, K. C. Lee, S. Y. Chen, and H. H. Chang, “6-Gingerol inhibits ROS and iNOS through the suppression of PKC-α and NF-κB pathways in lipopolysaccharide-stimulated mouse macrophages,” Biochemical and Biophysical Research Communications, vol. 382, no. 1, pp. 134–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. H. Y. Lee, S. H. Park, M. Lee et al., “1-Dehydro-[10]-gingerdione from ginger inhibits IKKβ activity for NF-κB activation and suppresses NF-κB-regulated expression of inflammatory genes,” British Journal of Pharmacology, vol. 167, no. 1, pp. 128–140, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. R. K. Mishra, A. Kumar, and A. Kumar, “Pharmacological activity of Zingiber officinale,” International Journal of Pharmaceutical and Chemical Sciences, vol. 1, no. 3, pp. 1073–1078, 2012.
  75. D. W. Connell and M. D. Sutherland, “A re-examination of gingerol, shogaol and zingerone, the pungent principles of Ginger (Zingiber officinale Roscoe),” Australian Journal of Chemistry, vol. 22, no. 5, pp. 1033–1043, 1969.
  76. Z. Yang, W. Yang, Q. Peng et al., “Volatile phytochemical composition of rhizome of ginger after extraction by headspace solid-phase microextraction, petrol ether extraction and steam distillation extraction,” Bangladesh Journal of Pharmacology, vol. 4, no. 2, pp. 136–143, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. Y. L. Hsu, C. Y. Chen, M. F. Hou et al., “6-dehydrogingerdione, an active constituent of dietary ginger, induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human breast cancer cells,” Molecular Nutrition and Food Research, vol. 54, no. 9, pp. 1307–1317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. E.-K. Ahn and J. S. Oh, “Inhibitory effect of galanolactone isolated from Zingiber officinale roscoe extract on adipogenesis in 3T3-L1 cells,” Journal of the Korean Society for Applied Biological Chemistry, vol. 55, no. 1, pp. 63–68, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Yoshikawa, S. Yamaguchi, K. Kunimi et al., “Stomachic principles in ginger. III. An anti-ulcer principle, 6- gingesulfonic acid, and three monoacyldigalactosylglycerols, gingerglycolipids A, B, and C, from Zingiberis Rhizoma originating in Taiwan,” Chemical and Pharmaceutical Bulletin, vol. 42, no. 6, pp. 1226–1230, 1994. View at Scopus