Advances in Toxicology The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Compound-Specific Toxicities Detected in CFU-GM, Rat Kidney NRK Cells, Rat Bladder RBLAK Cells, and Rat Liver Slices following Batracylin or N-Acetyl Batracylin Exposure Mon, 08 Sep 2014 00:00:00 +0000 The investigational anticancer agent batracylin (BAT; 8-aminoisoindolo [1,2-b]quinazolin-10(12H)-one; NSC320846) causes γ-H2AX foci development in exposed tumor cells and has demonstrated activity against solid tumors and adriamycin-resistant leukemia. Reports indicate BAT has wide interspecies variation of adverse effects, including myelosuppression, kidney, bladder, and liver damage, including biliary hyperplasia. The effects of BAT and its metabolite N-acetyl batracylin (NAB) were evaluated in the CFU-GM bone marrow toxicity assay, rat kidney (NRK) cells, bladder epithelial (RBLAK) cells, and rat precision cut liver slices (PCLS). Exposure effects were evaluated biochemically and histologically. Human, dog, and rat exhibited similar CFU-GM IC90 values for BAT (21–29 μM). The ATP assay and γ-H2AX staining showed time- and concentration-dependent toxicity in RBLAK (more severe than NRK at <72 hr) NRK and cells ( μM after 96 hr BAT exposure). BAT (5 μM and 25 μM) caused biochemical and histology changes to PCLS by day 3 and 25 μM produced centrilobular hepatotoxicity. NAB (≤5 μM) produced no toxicity in CFU-GM, NRK, or RBLAK cells. However, both BAT and NAB caused biliary epithelial cell proliferation in PCLS. Our studies demonstrated species similarities in sensitivity to BAT-induced myelosuppression, and implicate the metabolite NAB in biliary hyperplasia. Facundo M. Cutuli and Holger P. Behrsing Copyright © 2014 Facundo M. Cutuli and Holger P. Behrsing. All rights reserved. Extraction of Parquat from Blood by Clinoptilolite Tue, 19 Aug 2014 06:38:48 +0000 Paraquat is a bipyridyl herbicide and organic divalent cation which due to its high polarity and water solubility cannot be readily extracted by common organic solvents from body fluids. Dithionite color test for qualitative and quantitative determination of paraquat in urine has been proposed and used for many years. Although some methods were proposed for solvent extraction of paraquat from blood, they are less practical in clinical laboratories and lack high extraction recovery. Clinoptilolite is a highly porous natural zeolite with cation-exchange property and high surface area. In the present work, extraction of paraquat from human blood by clinoptilolite was investigated and compared with Amberlite CG-50 I, a well-known weak cation-exchanger. Blood paraquat was adsorbed by adsorbents (clinoptilolite or Amberlite) and extracted from them by saturated sodium chloride solution. Extracted paraquat was spectrophotometrically measured by means of sodium dithionite reagent at 394.5 nm. Recovery, limit of detection, considering signal-to-noise (S/N) ratio of 3, and limit of quantification, regarding S/N of 10, of paraquat extraction by clinoptilolite and Amberlite CG-50 were 81.7% ± 3.4%, 0.58 μg, and 1.93 μg and 83.6% ± 3.2%, 0.49 μg, and 1.63 μg, respectively. Repeatabilities (within-laboratory error) of paraquat extraction by clinoptilolite and Amberlite CG-50 I were 7.1% and 6.3%, respectively. Mohammad-Amin Aghaii-Afshar and Seyed Vahid Shetab-Boushehri Copyright © 2014 Mohammad-Amin Aghaii-Afshar and Seyed Vahid Shetab-Boushehri. All rights reserved.