About this Journal Submit a Manuscript Table of Contents
Advances in Urology
Volume 2012 (2012), Article ID 175843, 6 pages
http://dx.doi.org/10.1155/2012/175843
Research Article

New Pathophysiological Aspects of Growth and Prevention of Kidney Stones

Laboratories Viollier, Departement of Stone Research, Gartenstrasse 9, 2502 Biel, Switzerland

Received 15 February 2012; Revised 21 March 2012; Accepted 21 March 2012

Academic Editor: M. Hammad Ather

Copyright © 2012 J. M. Baumann and B. Affolter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. De La Rosette, D. Assimos, M. Desai et al., “The clinical research office of the endourological society percutaneous nephrolithotomy global study: indications, complications, and outcomes in 5803 patients,” Journal of Endourology, vol. 25, no. 1, pp. 11–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Altunrende, A. Tefekli, R. J. Stein et al., “Clinically insignificant residual fragments after percutaneous nephrolithotomy: medium-term follow-up,” Journal of Endourology, vol. 25, no. 6, pp. 941–945, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Candau, C. Saussine, H. Lang, C. Roy, F. Faure, and D. Jacqmin, “Natural history of residual renal stone fragments after ESWL,” European Urology, vol. 37, no. 1, pp. 18–22, 2000. View at Scopus
  4. J. Alonso and E. Somacarrera, “Scanning microscopy in renal lithiasis,” in Proceedings of the International Symposium on Renal Stone Research, pp. 256–263, Madrid, Spain, 1972.
  5. W. G. Robertson, M. Peacock, and B. E. Nordin, “Calcium crystalluria in recurrent renal-stone formers,” The Lancet, vol. 2, no. 7610, pp. 21–24, 1969. View at Scopus
  6. D. J. Kok, S. E. Papapoulos, and O. L. M. Bijvoet, “Crystal agglomeration is a major element in calcium oxalate urinary stone formation,” Kidney International, vol. 37, no. 1, pp. 51–56, 1990. View at Scopus
  7. N. K. Saw, P. N. Rao, and J. P. Kavanagh, “A nidus, crystalluria and aggregation: key ingredients for stone enlargement,” Urological Research, vol. 36, no. 1, pp. 11–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. S. R. Khan, B. Finlayson, and R. L. Hackett, “Stone matrix as proteins adsorbed on crystal surfaces: a microscopic study,” Scanning Electron Microscopy, vol. 1, no. 1, pp. 379–385, 1983. View at Scopus
  9. S. R. Khan and D. J. Kok, “Modulators of urinary stone formation,” Frontiers in Bioscience, vol. 9, pp. 1450–1482, 2004. View at Scopus
  10. R. L. Ryall, “Macromolecules and urolithiasis: parallels and paradoxes,” Nephron—Physiology, vol. 98, no. 2, pp. p37–p42, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Webber, A. L. Rodgers, and E. D. Sturrock, “Glycosylation of prothrombin fragment 1 governs calcium oxalate crystal nucleation and aggregation, but not crystal growth,” Urological Research, vol. 35, no. 6, pp. 277–285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. R. Asplin, J. H. Parks, Y. Nakagawa, and F. L. Coe, “Reduced crystallization inhibition by urine from women with nephrolithiasis,” Kidney International, vol. 61, no. 5, pp. 1821–1829, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Jaggi, Y. Nakagawa, L. Zipperle, and B. Hess, “Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function,” Urological Research, vol. 35, no. 2, pp. 55–62, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Hess, Y. Nakagawa, and F. L. Coe, “Inhibition of calcium oxalate monohydrate crystal aggregation by urine proteins,” American Journal of Physiology, vol. 257, no. 1, pp. 99–106, 1989. View at Scopus
  15. J. A. Wesson, V. Ganne, A. M. Beshensky, and J. G. Kleinman, “Regulation by macromolecules of calcium oxalate crystal aggregation in stone formers,” Urological Research, vol. 33, no. 3, pp. 206–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Finlayson and F. Reid, “The expectation of free and fixed particles in urinary stone disease,” Investigative Urology, vol. 15, no. 6, pp. 442–448, 1978. View at Scopus
  17. J. M. Baumann, B. Affolter, U. Caprez, C. Clivaz, Z. Glück, and R. Weber, “Stabilization of calcium oxalate suspension by urinary macromolecules, probably an efficient protection from stone formation,” Urologia Internationalis, vol. 79, no. 3, pp. 267–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Baumann, B. Affolter, and R. Meyer, “Crystal sedimentation and stone formation,” Urological Research, vol. 38, no. 1, pp. 21–27, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Baumann, B. Affolter, and R. Casella, “Aggregation of freshly precipitated calcium oxalate crystals in urine of calcium stone patients and controls,” Urological Research, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. W. L. Strohmaier, “Course of calcium stone disease without treatment. What can we expect?” European Urology, vol. 37, no. 3, pp. 339–344, 2000. View at Scopus
  21. R. H. Müller, Zetapotential und Partikelladung in der Laborpraxis, Wissenschaftliche Verlagsgesellschaft, Stuttgart, Germany, 1996.
  22. J. M. Baumann, B. Affolter, U. Caprez, C. Clivaz, and U. Von Arx, “Role of calcium in the aggregation of particles coated by urinary macromolecules,” Urologia Internationalis, vol. 82, no. 4, pp. 459–463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Hess, L. Zipperle, and P. Jaeger, “Citrate and calcium effects on Tamm-Horsfall glycoprotein as a modifier of calcium oxalate crystal aggregation,” American Journal of Physiology, vol. 265, no. 6, pp. F784–F791, 1993. View at Scopus
  24. A. Guerra, F. Allegri, T. Meschi et al., “Effects of urine dilution on quantity, size and aggregation of calcium oxalate crystals induced in vitro by an oxalate load,” Clinical Chemistry and Laboratory Medicine, vol. 43, no. 6, pp. 585–589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. D. J. Kok and S. R. Khan, “Calcium oxalate nephrolithiasis, a free or fixed particle disease,” Kidney International, vol. 46, no. 3, pp. 847–854, 1994. View at Scopus
  26. W. G. Robertson, “Kidney models of calcium oxalate stone formation,” Nephron—Physiology, vol. 98, no. 2, pp. p21–p30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Balcke, J. Zazgornik, G. Sunder-Plassmann et al., “Transient hyperoxaluria after ingestion of chocolate as a high risk factor for calcium oxolate calculi,” Nephron, vol. 51, no. 1, pp. 32–34, 1989. View at Scopus
  28. B. Lojanapiwat, M. Tanthanuch, C. Pripathanont, et al., “Alkaline citrate reduces stone recurrence and regrowth after shockwave lithotripsy and percutaneous nephrolithotomy,” International Brazilian Journal of Urology, vol. 37, no. 5, pp. 611–616, 2011.
  29. J. M. Baumann, B. Affolter, U. Caprez, and U. Henze, “Calcium oxalate aggregation in whole urine, new aspects of calcium stone formation and metaphylaxis,” European Urology, vol. 43, no. 4, pp. 421–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Arrabal-Martín, A. Fernández-Rodríguez, M. A. Arrabal-Polo, M. J. García-Ruiz, and A. Zuluaga-Gómez, “Extracorporeal renal lithotripsy: evolution of residual lithiasis treated with thiazides,” Urology, vol. 68, no. 5, pp. 956–959, 2006. View at Publisher · View at Google Scholar · View at Scopus