About this Journal Submit a Manuscript Table of Contents
Advances in Urology
Volume 2012 (2012), Article ID 429213, 10 pages
http://dx.doi.org/10.1155/2012/429213
Review Article

A Decade of FGF Receptor Research in Bladder Cancer: Past, Present, and Future Challenges

1Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James’s University Hospital, Leeds LS9 7TF, UK
2Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK

Received 31 May 2012; Accepted 17 June 2012

Academic Editor: Nan-Haw Chow

Copyright © 2012 Erica di Martino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. N. S. G. Eble, J. I. Epstein, and I. A. Sesterhenn, Eds., EditorWorld Health Organization. Classification of Tumours. Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs, IARC Press, Lyon, France, 2004.
  3. L. H. Sobin, M. K. Gospodarowicz, and C. Wittekind, TNM Classification of Malignant Tumours, Wiley-Blackwell, Oxford, UK, 2010.
  4. F. K. Mostofi, C. J. Davies, and I. Sesterhenn, Histological Typing of Urinary Bladder Tumours, Springer, New York, NY, USA, 1999.
  5. M. Brausi, J. A. Witjes, D. Lamm, R. Persad, J. Palou, et al., “A review of current guidelines and best practice recommendations for the management of nonmuscle invasive bladder cancer by the international bladder cancer group,” The Journal of Urology, vol. 186, no. 6, pp. 2158–2167, 2011.
  6. M. F. Botteman, C. L. Pashos, A. Redaelli, B. Laskin, and R. Hauser, “The health economics of bladder cancer: a comprehensive review of the published literature,” Pharmacoeconomics, vol. 21, no. 18, pp. 1315–1330, 2003. View at Scopus
  7. V. K. Sangar, N. Ragavan, S. S. Matanhelia, M. W. Watson, and R. A. Blades, “The economic consequences of prostate and bladder cancer in the UK,” BJU International, vol. 95, no. 1, pp. 59–63, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. L. Pashos, M. F. Botteman, B. L. Laskin, and A. Redaelli, “Bladder cancer: epidemiology, diagnosis, and management,” Cancer Practice, vol. 10, no. 6, pp. 311–322, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. J. Sylvester, A. P. M. van der Meijden, W. Oosterlinck et al., “Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials,” European Urology, vol. 49, no. 3, pp. 466–475, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Witjes, L. A. L. M. Kiemeney, H. E. Schaafsma, and F. M. J. Debruyene, “The influence of review pathology on study outcome of a randomized multicentre bladder cancer trial,” British Journal of Urology, vol. 73, no. 2, pp. 172–176, 1994. View at Scopus
  11. I. Tosoni, U. Wagner, G. Sauter et al., “Clinical significance of interobserver differences in the staging and grading of superficial bladder cancer,” BJU International, vol. 85, no. 1, pp. 48–53, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. R. T. Böttcher and C. Niehrs, “Fibroblast growth factor signaling during early vertebrate development,” Endocrine Reviews, vol. 26, no. 1, pp. 63–77, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. C. J. Powers, S. W. McLeskey, and A. Wellstein, “Fibroblast growth factors, their receptors and signaling,” Endocrine-Related Cancer, vol. 7, no. 3, pp. 165–197, 2000. View at Scopus
  14. A. Beenken and M. Mohammadi, “The FGF family: biology, pathophysiology and therapy,” Nature Reviews Drug Discovery, vol. 8, no. 3, pp. 235–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. K. Olsen, O. A. Ibrahimi, A. Raucci et al., “Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 4, pp. 935–940, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Klint and L. Claesson-Welsh, “Signal transduction by fibroblast growth factor receptors,” Frontiers in Bioscience, vol. 4, pp. D165–D177, 1999. View at Scopus
  17. D. M. Ornitz, J. Xu, J. S. Colvin et al., “Receptor specificity of the fibroblast growth factor family,” The Journal of Biological Chemistry, vol. 271, no. 25, pp. 15292–15297, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Zhang, O. A. Ibrahimi, S. K. Olsen, H. Umemori, M. Mohammadi, and D. M. Ornitz, “Receptor specificity of the fibroblast growth factor family: the complete mammalian FGF family,” The Journal of Biological Chemistry, vol. 281, no. 23, pp. 15694–15700, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. T. Chellaiah, D. G. McEwen, S. Werner, J. Xu, and D. M. Ornitz, “Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1,” The Journal of Biological Chemistry, vol. 269, no. 15, pp. 11620–11627, 1994. View at Scopus
  20. F. Wang, M. Kan, G. Yan, J. Xu, and W. L. McKeehan, “Alternately spliced NH2-terminal immunoglobulin-like loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1,” The Journal of Biological Chemistry, vol. 270, no. 17, pp. 10231–10235, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. L. L. Root and G. D. Shipley, “Normal human fibroblasts produce membrane-bound and soluble isoforms of FGFR-1,” Molecular Cell Biology Research Communications, vol. 3, no. 2, pp. 87–97, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Terada, A. Shimizu, N. Sato, S. I. Miyakaze, H. Katayama, and M. Kurokawa-Seo, “Fibroblast growth factor receptor 3 lacking the Ig IIIb and transmembrane domains secreted from human squamous cell carcinoma DJM-1 binds to FGFs,” Molecular Cell Biology Research Communications, vol. 4, no. 6, pp. 365–373, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Sleeman, J. Fraser, M. McDonald et al., “Identification of a new fibroblast growth factor receptor, FGFR5,” Gene, vol. 271, no. 2, pp. 171–182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Trueb, “Biology of FGFRL1, the fifth fibroblast growth factor receptor,” Cellular and Molecular Life Sciences, vol. 68, no. 6, pp. 951–964, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Bourdin, X. Sastre-Garau, D. Chopin, J. P. Thiery, and F. Radvanyi, “Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas,” Nature Genetics, vol. 23, no. 1, pp. 18–20, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Sibley, D. Cuthbert-Heavens, and M. A. Knowles, “Loss of heterozygosity at 4p16.3 and mutation of FGFR3 in transitional cell carcinoma,” Oncogene, vol. 20, no. 6, pp. 686–691, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. B. W. G. van Rhijn, R. Montironi, E. C. Zwarthoff, A. C. Jöbsis, and T. H. van der Kwast, “Frequent FGFR3 mutations in urothelial papilloma,” The Journal of Pathology, vol. 198, no. 2, pp. 245–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Hernández, E. López-Knowles, J. Lloreta et al., “Prospective study of FGFR3 mutations as a prognostic factor in nonmuscle invasive urothelial bladder carcinomas,” Journal of Clinical Oncology, vol. 24, no. 22, pp. 3664–3671, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Billerey, D. Chopin, M. H. Aubriot-Lorton et al., “Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors,” American The Journal of Pathology, vol. 158, no. 6, pp. 1955–1959, 2001. View at Scopus
  30. M. Burger, M. N. M. van der Aa, J. M. M. van Oers et al., “Prediction of progression of non-muscle-invasive bladder cancer by WHO 1973 and 2004 grading and by FGFR3 mutation status: a prospective study,” European Urology, vol. 54, no. 4, pp. 835–844, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. M. M. van Oers, E. C. Zwarthoff, I. Rehman et al., “FGFR3 mutations indicate better survival in invasive upper urinary tract and bladder tumours,” European Urology, vol. 55, no. 3, pp. 650–658, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. D. C. Tomlinson, O. Baldo, P. Hamden, and M. A. Knowles, “FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer,” The Journal of Pathology, vol. 213, no. 1, pp. 91–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Adar, E. Monsonego-Ornan, P. David, and A. Yayon, “Differential activation of cysteine-substitution mutants of fibroblast growth factor receptor 3 is determined by cysteine localization,” Journal of Bone and Mineral Research, vol. 17, no. 5, pp. 860–868, 2002. View at Scopus
  34. P. Y. D'Avis, S. C. Robertson, A. N. Meyer, W. M. Bardwell, M. K. Webster, and D. J. Donoghue, “Constitutive activation of fibroblast growth factor receptor 3 by mutations responsible for the lethal skeletal dysplasia thanatophoric dysplasia type I,” Cell Growth and Differentiation, vol. 9, no. 1, pp. 71–78, 1998. View at Scopus
  35. F. Chen, C. Degnin, M. Laederich, W. A. Horton, and K. Hristova, “The A391E mutation enhances FGFR3 activation in the absence of ligand,” Biochimica et Biophysica Acta, vol. 1808, no. 8, pp. 2045–2050, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. K. Webster, P. Y. D'Avis, S. C. Robertson, and D. J. Donoghue, “Profound ligand-independent kinase activation of fibroblast growth factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II,” Molecular and Cellular Biology, vol. 16, no. 8, pp. 4081–4087, 1996. View at Scopus
  37. P. M. J. Lievens, A. Roncador, and E. Liboi, “K644E/M FGFR3 mutants activate Erk1/2 from the endoplasmic reticulum through FRS2α and PLCγ-independent pathways,” Journal of Molecular Biology, vol. 357, no. 3, pp. 783–792, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. D. C. Tomlinson, C. G. L'Hôte, W. Kennedy, E. Pitt, and M. A. Knowles, “Alternative splicing of fibroblast growth factor receptor 3 produces a secreted isoform that inhibits fibroblast growth factor-induced proliferation and is repressed in urothelial carcinoma cell lines,” Cancer Research, vol. 65, no. 22, pp. 10441–10449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. T. Kimura, H. Suzuki, T. Ohashi, K. Asano, H. Kiyota, et al., “The incidence of thanatophoric dysplasia mutations in FGFR3 gene is higher in low-grade or superficial bladder carcinomas,” Cancer, vol. 92, no. 10, pp. 2555–2561, 2001.
  40. K. Bodoor, A. Ghabkari, Z. Jaradat et al., “FGFR3 mutational status and protein expression in patients with bladder cancer in a Jordanian population,” Cancer Epidemiology, vol. 34, no. 6, pp. 724–732, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. B. W. G. van Rhijn, I. Lurkin, F. Radvanyi, W. J. Kirkels, T. H. van der Kwast, and E. C. Zwarthoff, “The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate,” Cancer Research, vol. 61, no. 4, pp. 1265–1268, 2001. View at Scopus
  42. B. van Rhijn, A. van Tilborg, I. Lurkin et al., “Novel fibroblast growth factor receptor 3 (FGFR3) mutations in bladder cancer previously identified in non-lethal skeletal disorders,” European Journal of Human Genetics, vol. 10, no. 12, pp. 819–824, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Hafner, J. M. M. Van Oers, A. Hartmann et al., “High frequency of FGFR3 mutations in adenoid seborrheic keratoses,” Journal of Investigative Dermatology, vol. 126, no. 11, pp. 2404–2407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Chesi, E. Nardini, L. A. Brents et al., “Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3,” Nature Genetics, vol. 16, no. 3, pp. 260–264, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Karoui, H. Hofmann-Radvanyi, U. Zimmermann et al., “No evidence of somatic FGFR3 mutation in various types of carcinoma,” Oncogene, vol. 20, no. 36, pp. 5059–5061, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Sibley, P. Stern, and M. A. Knowles, “Frequency of fibroblast growth factor receptor 3 mutations in sporadic tumours,” Oncogene, vol. 20, no. 32, pp. 4416–4418, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Wallerand, A. A. Bakkar, S. G. D. de Medina et al., “Mutations in TP53, but not FGFR3, in urothelial cell carcinoma of the bladder are influenced by smoking: contribution of exogenous versus endogenous carcinogens,” Carcinogenesis, vol. 26, no. 1, pp. 177–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. A. Bakkar, Y. Allory, Y. Iwatsubo et al., “Occupational exposure to polycyclic aromatic hydrocarbons influenced neither the frequency nor the spectrum of FGFR3 mutations in bladder urothelial carcinoma,” Molecular Carcinogenesis, vol. 49, no. 1, pp. 25–31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Di Martino, C. G. L'Hote, W. Kennedy, D. C. Tomlinson, and M. A. Knowles, “Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type-and mutation-specific manner,” Oncogene, vol. 28, no. 48, pp. 4306–4316, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. J. M. M. van Oers, C. Adam, S. Denzinger et al., “Chromosome 9 deletions are more frequent than FGFR3 mutations in flat urothelial hyperplasias of the bladder,” International Journal of Cancer, vol. 119, no. 5, pp. 1212–1215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. A. O. M. Wilkie, “Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations,” Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 187–203, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Matsumoto, Y. Ohtsuki, K. Ochii et al., “Fibroblast growth factor receptor 3 protein expression in urothelial carcinoma of the urinary bladder, exhibiting no association with low-grade and/or non-invasive lesions,” Oncology Reports, vol. 12, no. 5, pp. 967–971, 2004. View at Scopus
  53. J. J. Gómez-Román, P. Saenz, J. C. González et al., “Fibroblast growth factor receptor 3 is overexpressed in urinary tract carcinomas and modulates the neoplastic cell growth,” Clinical Cancer Research, vol. 11, no. 2, pp. 459–465, 2005. View at Scopus
  54. P. Mhawech-Fauceglia, R. T. Cheney, and J. Schwaller, “Genetic alterations in urothelial bladder carcinoma: an updated review,” Cancer, vol. 106, no. 6, pp. 1205–1216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. J. W. F. Catto, S. Miah, H. C. Owen et al., “Distinct microRNA alterations characterize high- and low-grade bladder cancer,” Cancer Research, vol. 69, no. 21, pp. 8472–8481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Ravery, J. Jouanneau, S. Gil Diez et al., “Immunohistochemical detection of acidic fibroblast growth factor in bladder transitional cell carcinoma,” Urological Research, vol. 20, no. 3, pp. 211–214, 1992. View at Publisher · View at Google Scholar · View at Scopus
  57. D. K. Chopin, J. P. Caruelle, M. Colombel et al., “Increased immunodetection of acidic fibroblast growth factor in bladder cancer, detectable in urine,” Journal of Urology, vol. 150, no. 4, pp. 1126–1130, 1993. View at Scopus
  58. D. Giri, F. Ropiquet, and M. Ittmann, “Alterations in expression of basic fibroblast growth factor (FGF) 2 and its receptor FGFR-1 in human prostate cancer,” Clinical Cancer Research, vol. 5, no. 5, pp. 1063–1071, 1999. View at Scopus
  59. F. Penault-Llorca, F. Bertucci, J. Adelaide et al., “Expression of FGF and FGF receptor genes in human breast cancer,” International Journal of Cancer, vol. 61, no. 2, pp. 170–176, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Yamaguchi, H. Saya, J. M. Bruner, and R. S. Morrison, “Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 2, pp. 484–488, 1994. View at Scopus
  61. N. Turner, A. Pearson, R. Sharpe et al., “FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer,” Cancer Research, vol. 70, no. 5, pp. 2085–2094, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. N. C. P. Cross and A. Reiter, “Tyrosine kinase fusion genes in chronic myeloproliferative diseases,” Leukemia, vol. 16, no. 7, pp. 1207–1212, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. J. S. Reis-Filho, P. T. Simpson, N. C. Turner et al., “FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas,” Clinical Cancer Research, vol. 12, no. 22, pp. 6652–6662, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. K. W. Freeman, B. E. Welm, R. D. Gangula et al., “Inducible prostate intraepithelial neoplasia with reversible hyperplasia in conditional FGFR1-expressing mice,” Cancer Research, vol. 63, no. 23, pp. 8256–8263, 2003. View at Scopus
  65. K. W. Freeman, R. D. Gangula, B. E. Welm et al., “Conditional activation of fibroblast growth factor receptor (FGFR) 1, but not FGFR2, in prostate cancer cells leads to increased osteopontin induction, extracellular signal-regulated kinase activation, and in vivo proliferation,” Cancer Research, vol. 63, no. 19, pp. 6237–6243, 2003. View at Scopus
  66. B. E. Welm, K. W. Freeman, M. Chen, A. Contreras, D. M. Spencer, and J. M. Rosen, “Inducible dimerization of FGFR1: development of a mouse model to analyze progressive transformation of the mammary gland,” Journal of Cell Biology, vol. 157, no. 4, pp. 703–714, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. V. D. Acevedo, R. D. Gangula, K. W. Freeman et al., “Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition,” Cancer Cell, vol. 12, no. 6, pp. 559–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. D. C. Tomlinson, F. R. Lamont, S. D. Shnyder, and M. A. Knowles, “Fibroblast growth factor receptor 1 promotes proliferation and survival via activation of the mitogen-activated protein kinase pathway in bladder cancer,” Cancer Research, vol. 69, no. 11, pp. 4613–4620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. D. C. Tomlinson and M. A. Knowles, “Altered splicing of FGFR1 is associated with high tumor grade and stage and leads to increased sensitivity to FGF1 in bladder cancer,” American The Journal of Pathology, vol. 177, no. 5, pp. 2379–2386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. S. G. D. de Medina, D. Chopin, A. El Marjou et al., “Decreased expression of keratinocyte growth factor receptor in a subset of human transitional cell bladder carcinomas,” Oncogene, vol. 14, no. 3, pp. 323–330, 1997. View at Scopus
  71. D. Ricol, D. Cappellen, A. El Marjou et al., “Tumour suppressive properties of fibroblast growth factor receptor 2-IIIb in human bladder cancer,” Oncogene, vol. 18, no. 51, pp. 7234–7243, 1999. View at Scopus
  72. I. Bernard-Pierrot, A. Brams, C. Dunois-Lardé et al., “Oncogenic properties of the mutated forms of fibroblast growth factor receptor 3b,” Carcinogenesis, vol. 27, no. 4, pp. 740–747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. D. C. Tomlinson, C. D. Hurst, and M. A. Knowles, “Knockdown by shRNA identifies S249C mutant FGFR3 as a potential therapeutic target in bladder cancer,” Oncogene, vol. 26, no. 40, pp. 5889–5899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Qing, X. Du, Y. Chen et al., “Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)-positive multiple myeloma in mice,” The Journal of Clinical Investigation, vol. 119, no. 5, pp. 1216–1229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Martínez-Torrecuadrada, G. Cifuentes, P. López-Serra, P. Saenz, A. Martínez, and J. I. Casal, “Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation,” Clinical Cancer Research, vol. 11, no. 17, pp. 6280–6290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. D. C. Tomlison, E. W. Baxter, and P. M. Loadman et al., “FGFR1-induced epithelial to mesenchymal transition through MAPK/PLCγ/COX-2-mediated mechanisms,” Plos ONE, vol. 7, no. 6, 2012. View at Publisher · View at Google Scholar
  77. J. M. M. van Oers, I. Lurkin, A. J. A. van Exsel et al., “A simple and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3 mutations in bladder cancer and voided urine,” Clinical Cancer Research, vol. 11, no. 21, pp. 7743–7748, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. T. C. M. Zuiverloon, S. S. Tjin, M. Busstra, C. H. Bangma, E. R. Boevé, and E. C. Zwarthoff, “Optimization of nonmuscle invasive bladder cancer recurrence detection using a urine based FGFR3 mutation assay,” Journal of Urology, vol. 186, no. 2, pp. 707–712, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. L. C. Kompier, I. Lurkin, M. N. M. van der Aa, B. W. G. van Rhijn, T. H. van der Kwast, and E. C. Zwarthoff, “FGFR3, HRAS, KRAS, NRAS AND PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy,” PLoS ONE, vol. 5, no. 11, Article ID e13821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. M. J. Roobol, C. H. Bangma, S. el Bouazzaoui, C. G. Franken-Raab, and E. C. Zwarthoff, “Feasibility study of screening for bladder cancer with urinary molecular markers (the BLU-P project),” Urologic Oncology, vol. 28, no. 6, pp. 686–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. R. R. Serizawa, U. Ralfkiær, K. Steven et al., “Integrated genetic and epigenetic analysis of bladder cancer reveals an additive diagnostic value of FGFR3 mutations and hypermethylation events,” International Journal of Cancer, vol. 129, no. 1, pp. 78–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. L. C. Kompier, M. N. M. van der Aa, I. Lurkin et al., “The development of multiple bladder tumour recurrences in relation to the FGFR3 mutation status of the primary tumour,” The Journal of Pathology, vol. 218, no. 1, pp. 104–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. B. W. van Rhijn, T. H. van der Kwast, L. Liu, N. E. Fleshner, P. J. Bostrom, et al., “The FGFR3 mutation is related to favorable pT1 bladder cancer,” The Journal of Urology, vol. 187, no. 1, pp. 310–314, 2012.
  84. B. W. G. Van Rhijn, T. C. M. Zuiverloon, A. N. Vis et al., “Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer,” European Urology, vol. 58, no. 3, pp. 433–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. G. Ploussard, H. Soliman, F. Dubosq, P. Meria, J. Verine, et al., “The prognostic value of FGFR3 mutational status for disease recurrence and progression depends on allelic losses at 9p22,” American Journal of Cancer Research, vol. 1, no. 4, pp. 498–507, 2011.
  86. M. Mohammadi, S. Froum, J. M. Hamby et al., “Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain,” EMBO Journal, vol. 17, no. 20, pp. 5896–5904, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. D. Sarker, R. Molife, T. R. J. Evans et al., “A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors,” Clinical Cancer Research, vol. 14, no. 7, pp. 2075–2081, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Mohammadi, G. McMahon, L. Sun et al., “Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors,” Science, vol. 276, no. 5314, pp. 955–960, 1997. View at Publisher · View at Google Scholar · View at Scopus
  89. M. Miyake, M. Ishii, N. Koyama et al., “1-tert-butyl-3-[6-(3,5-dimethoxy-phenyl)-2-(4-diethylamino-butylamino) -pyrido[2,3-d]pyrimidin-7-yl]-urea (PD173074), a selective tyrosine kinase inhibitor of fibroblast growth factor receptor-3 (FGFR3), inhibits cell proliferation of bladder cancer carrying the FGFR3 gene mutation along with up-regulation of p27/Kip1 and G1/G0 arrest,” Journal of Pharmacology and Experimental Therapeutics, vol. 332, no. 3, pp. 795–802, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. F. R. Lamont, D. C. Tomlinson, P. A. Cooper, S. D. Shnyder, J. D. Chester, and M. A. Knowles, “Small molecule FGF receptor inhibitors block FGFR-dependent urothelial carcinoma growth in vitro and in vivo,” British Journal of Cancer, vol. 104, no. 1, pp. 75–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Greulich and P. M. Pollock, “Targeting mutant fibroblast growth factor receptors in cancer,” Trends in Molecular Medicine, vol. 17, no. 5, pp. 283–292, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Harris, “Monoclonal antibodies as therapeutic agents for cancer,” The Lancet Oncology, vol. 5, no. 5, pp. 292–302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. J. L. Martínez-Torrecuadrada, L. H. Cheung, P. López-Serra et al., “Antitumor activity of fibroblast growth factor receptor 3-specific immunotoxins in a xenograft mouse model of bladder carcinoma is mediated by apoptosis,” Molecular Cancer Therapeutics, vol. 7, no. 4, pp. 862–873, 2008. View at Publisher · View at Google Scholar · View at Scopus