About this Journal Submit a Manuscript Table of Contents
Advances in Urology
Volume 2012 (2012), Article ID 676303, 8 pages
http://dx.doi.org/10.1155/2012/676303
Methodology Report

Monitoring Detrusor Oxygenation and Hemodynamics Noninvasively during Dysfunctional Voiding

1Near Infrared Spectroscopy Research Group, Department of Urology, Faculty of Medicine, University of British Columbia and UBC Hospital Bladder Care Centre, Unit IB—Room F329, 221 Wesbrook Mall, Vancouver, BC, Canada V6T 1Z3
2Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, 10 Marais Street, Stellenbosch 7600, South Africa

Received 21 April 2012; Revised 3 July 2012; Accepted 17 July 2012

Academic Editor: Ferdinando Fusco

Copyright © 2012 Andrew J. Macnab et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Canadian Journal of Applied Physiology, vol. 29, no. 4, pp. 463–487, 2004. View at Scopus
  2. T. Hamaoka, K. K. McCully, V. Quaresima, K. Yamamoto, and B. Chance, “Near-infrared spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans,” Journal of Biomedical Optics, vol. 12, no. 6, Article ID 062105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” Journal of Biomedical Optics, vol. 12, no. 6, Article ID 062104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Ferrari, M. Muthalib, and V. Quaresima, “The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments,” Philosophical Transactions of the Royal Society A, vol. 369, pp. 4577–4590, 2011.
  5. J. Pannek, “Editorial comment on: classification of male lower urinary tract symptoms using mathematical modelling and a regression tree algorithm of noninvasive near-infrared spectroscopy parameters,” European Urology, vol. 57, no. 2, pp. 332–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. D. E. Chung, R. K. Lee, S. A. Kaplan, and A. E. Te, “Concordance of near infrared spectroscopy with pressure flow studies in men with lower urinary tract symptoms,” Journal of Urology, vol. 184, no. 6, pp. 2434–2439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. J. Macnab and L. Stothers, “Near-infrared spectroscopy: validation of bladder-outlet obstruction assessment using non-invasive parameters,” The Canadian Journal of Urology, vol. 15, no. 5, pp. 4241–4248, 2008. View at Scopus
  8. B. Shadgan, K. Afshar, L. Stothers, and A. Macnab, “Near-infrared spectroscopy of the bladder: a new technique for studying lower urinary tract function in health and disease,” in Proceedings of the Photonic Therapeutics and Diagnostics VI, vol. 75480U of Proceedings of the SPIE 7548, January 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. J. Macnab, B. Shadgan, K. Afshar, and L. Stothers, “Near-Infrared Spectroscopy of the bladder: new parameters for evaluating voiding dysfunction,” International Journal of Spectroscopy, vol. 2011, Article ID 814179, 8 pages, 2011. View at Publisher · View at Google Scholar
  10. A. J. Macnab, B. Shadgan, L. Stothers, and K. Afshar, “Ambulant monitoring of bladder oxygenation and hemodynamics using wireless near-infrared spectroscopy,” Canadian Urological Association Journal, vol. 24, pp. 1–7, 2012.
  11. A. J. Macnab, B. Shadgan, and L. Stothers, “The evolution of wireless near infrared spectroscopy applications in urology and rationale for clinical use,” Journal of Near Infrared Spectroscopy, vol. 20, pp. 57–73, 2012. View at Publisher · View at Google Scholar
  12. F. F. Farag, F. M. Martens, K. W. D'Hauwers, W. F. Feitz, and J. P. Heesakkers, “Near-infrared spectroscopy: a novel, noninvasive, diagnostic method for detrusor overactivity in patients with overactive bladder symptoms—a preliminary and experimental study,” European Urology, vol. 59, no. 5, pp. 757–762, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Vijaya, G. A. Digesu, A. Erpas, et al., “Changes in detrusor muscle oxygenation during detrusor overactivity contractions,” European Journal of Obstetrics, Gynecology, and Reproductive Biology, vol. 163, no. 1, pp. 104–107, 2012.
  14. M. Yurt, E. Suer, O. Gulpinar, et al., “Diagnosis of bladder outlet obstruction in men with lower urinary tract symptoms: comparison of near infrared spectroscopy algorithm and pressure flow studies,” Urology, vol. 80, no. 1, pp. 182–186, 2012.
  15. T. Antunes-Lopes, S. Carvalho-Barros, C. Cruz, et al., “Biomarkers in overactive bladder: a new objective and non-invasive tool,” Advances in Urology, vol. 2011, Article ID 382431, 7 pages, 2011. View at Publisher · View at Google Scholar
  16. A. Elbadawi, “Voiding dysfunction in benign prostatic hyperplasia: trends, controversies and recent revelations. II. Pathology and pathophysiology,” Urology, vol. 51, no. 5, pp. 73–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Te, D. E. Chung, R. I. Lee, et al., “Near infrared spectroscopy (NIRS) for application in urology,” Journal of Urology, vol. 181, no. 4, supplement, pp. 601–602, 2009.
  18. J. K. Parsons and A. W. Partin, “Hugh Hampton Young, benign prostatic hyperplasia, and ‘The Cure of Prostatic Obstruction’,” Journal of the American College of Surgeons, vol. 201, no. 5, pp. 654–655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Løvvik, S. Yaqub, H. Oustad, et al., “Can noninvasive evaluation of benign prostatic obstruction be optimized?” Current Opinions in Urology, vol. 22, no. 1, pp. 1–6, 2012.
  20. L. Stothers, B. Shadgan, and A. Macnab, “Urological applications of near infrared spectroscopy,” The Canadian Journal of Urology, vol. 15, no. 6, pp. 4399–4409, 2008. View at Scopus
  21. A. J. Macnab and L. Stothers, “Development of a near-infrared spectroscopy instrument for applications in urology,” The Canadian Journal of Urology, vol. 15, no. 5, pp. 4233–4240, 2008. View at Scopus
  22. L. Stothers, B. Shadgan, and A. J. Macnab, “Near-infrared spectroscopy of the detrusor during urodynamics with simultaneous ultrasound measurements of bladder dimensions and position,” Biomedical Spectroscopy and Imaging, vol. 1, no. 2, pp. 137–145, 2012.
  23. S. Homma, H. Eda, S. Ogasawara, and A. Kagaya, “Near-infrared estimation of O2 supply and consumption in forearm muscles working at varying intensity,” Journal of Applied Physiology, vol. 80, no. 4, pp. 1279–1284, 1996. View at Scopus
  24. B. Shadgan, A. J. Macnab, L. Stothers, and M. Nigro, “Monitoring of lower urinary tract function in patients with spinal cord injury using near infrared spectroscopy,” in Proceedings of the Photonic Therapeutics and Diagnostics VIII, vol. 820717 of Proceedings of the SPIE 8207, 2012. View at Publisher · View at Google Scholar
  25. M. C. P. van Beekvelt, B. G. M. van Engelen, R. A. Wevers, and W. N. J. M. Colier, “In vivo quantitative near-infrared spectroscopy in skeletal muscle during incremental isometric handgrip exercise,” Clinical Physiology and Functional Imaging, vol. 22, no. 3, pp. 210–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. C. P. van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. van Engelen, “Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle,” Journal of Applied Physiology, vol. 90, no. 2, pp. 511–519, 2001. View at Scopus
  27. Y. N. Bhambhani, “Muscle oxygenation trends during dynamic exercise measured by near infrared spectroscopy,” Canadian Journal of Applied Physiology, vol. 29, no. 4, pp. 504–523, 2004. View at Scopus
  28. A. Ušaj, B. Jereb, P. Robi, and S. P. von Duvillard, “The influence of strength-endurance training on the oxygenation of isometrically contracted forearm muscles,” European Journal of Applied Physiology, vol. 100, no. 6, pp. 685–692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. G. Ellis, “The microcirculation as a functional system,” Critical Care, vol. 9, supplement 4, p. S3, 2003.
  30. R. N. Pittman, “Oxygen supply to contracting skeletal muscle at the microcirculatory level: diffusion vs. convection,” Acta Physiologica Scandinavica, vol. 168, no. 4, pp. 593–602, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. S. S. Segal, “Regulation of blood flow in the microcirculation,” Microcirculation, vol. 12, no. 1, pp. 33–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Murthy, A. R. Hargens, S. Lehman, and D. M. Rempel, “Ischemia causes muscle fatigue,” Journal of Orthopaedic Research, vol. 19, no. 3, pp. 436–440, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Stothers, R. Guevara, and A. Macnab, “Classification of male lower urinary tract symptoms using mathematical modelling and a regression tree algorithm of noninvasive near-infrared spectroscopy parameters,” European Urology, vol. 57, no. 2, pp. 327–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Guevara, L. Stothers, and A. Macnab, “Algorithm construction methodology for diagnostic classification of near-infrared spectroscopy data,” Spectroscopy, vol. 25, no. 1, pp. 1–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Shadgan, W. D. Reid, R. Gharakhanlou, L. Stothers, and A. J. MacNab, “Wireless near-infrared spectroscopy of skeletal muscle oxygenation and hemodynamics during exercise and ischemia,” Spectroscopy, vol. 23, no. 5-6, pp. 233–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. F. F. Farag and J. P. Heesakkers, “Non-invasive techniques in the diagnosis of bladder storage disorders,” Neurourology and Urodynamics, vol. 30, no. 8, pp. 1422–1428, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. C. Michel, “The forefront for novel therapeutic agents based on the pathophysiology of lower urinary tract dysfunction: α-blockers in the treatment of male voiding dysfunction—how do they work and why do they differ in tolerability?” Journal of Pharmacological Sciences, vol. 112, no. 2, pp. 151–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. K. E. Andersson and P. Hedlund, “Pharmacologic perspective on the physiology of the lower urinary tract,” Urology, vol. 60, no. 5, supplement 1, pp. 13–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Nitti, “Pressure flow urodynamic studies: the gold standard for diagnosing bladder outlet obstruction,” Reviews in Urology, vol. 7, supplement 6, pp. S14–S21, 2005.