About this Journal Submit a Manuscript Table of Contents
Advances in Urology
Volume 2013 (2013), Article ID 348438, 6 pages
http://dx.doi.org/10.1155/2013/348438
Research Article

Clinical Significance of Amyloid Precursor Protein in Patients with Testicular Germ Cell Tumor

1Department of Urology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
2Department of Urology, National Center of Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
3Department of Urology, Nihon University, School of Medicine, Itabashi-ku, Tokyo, Japan
4Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
5Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
6Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Hidaka-shi, Saitama, Japan

Received 13 February 2013; Accepted 17 March 2013

Academic Editor: Maxwell V. Meng

Copyright © 2013 Yuta Yamada et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Albers, W. Albrecht, F. Algaba et al., “EAU guidelines on testicular cancer: 2011 update,” European Urology, vol. 60, no. 2, pp. 304–319, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001. View at Scopus
  3. D. Schubert, L.-W. Jin, T. Saitoh, and G. Cole, “The regulation of amyloid β protein precursor secretion and its modulatory role in cell adhesion,” Neuron, vol. 3, no. 6, pp. 689–694, 1989. View at Scopus
  4. Y. Gao and S. W. Pimplikar, “The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 14979–14984, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Siemes, T. Quast, E. Klein, T. Bieber, N. M. Hooper, and V. Herzog, “Normalized proliferation of normal and psoriatic keratinocytes by supperssion of sAPPα-release,” Journal of Investigative Dermatology, vol. 123, no. 3, pp. 556–563, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Schmitz, R. Tikkanen, G. Kirfel, and V. Herzog, “The biological role of the Alzheimer amyloid precursor protein in epithelial cells,” Histochemistry and Cell Biology, vol. 117, no. 2, pp. 171–180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Saitoh, M. Sundsmo, J. M. Roch et al., “Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts,” Cell, vol. 58, no. 4, pp. 615–622, 1989. View at Scopus
  8. C. E. Tang, Y. J. Guan, B. Yi et al., “Identification of the amyloid β-protein precursor and cystatin C as novel epidermal growth factor receptor regulated secretory proteins in nasopharyngeal carcinoma by proteomics,” Journal of Proteome Research, vol. 9, no. 12, pp. 6101–6111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Y. Ko, S. C. Lin, K. W. Chang et al., “Increased expression of amyloid precursor protein in oral squamous cell carcinoma,” International Journal of Cancer, vol. 111, no. 5, pp. 727–732, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. U. Pietrzik, J. Hoffmann, K. Stöber et al., “From differentiation to proliferation: the secretory amyloid precursor protein as a local mediator of growth in thyroid epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1770–1775, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Krause, S. Karger, S. Y. Sheu et al., “Evidence for a role of the amyloid precursor protein in thyroid carcinogenesis,” Journal of Endocrinology, vol. 198, no. 2, pp. 291–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Y. Meng, H. Kataoka, H. Itoh, and M. Koono, “Amyloid β protein precursor is involved in the growth of human colon carcinoma cell in vitro and in vivo,” International Journal of Cancer, vol. 92, no. 1, pp. 31–39, 2001. View at Scopus
  13. V. Venkataramani, C. Rossner, L. Iffland et al., “Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the alzheimer amyloid precursor protein,” The Journal of Biological Chemistry, vol. 285, no. 14, pp. 10678–10689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Takayama, S. Tsutsumi, T. Suzuki et al., “Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth,” Cancer Research, vol. 69, no. 1, pp. 137–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. G. M. Mead, “International germ cell consensus classification: a prognostic factor- based staging system for metastatic germ cell cancers,” Journal of Clinical Oncology, vol. 15, no. 2, pp. 594–603, 1997. View at Scopus
  16. T. Fujimura, S. Takahashi, T. Urano et al., “Estrogen receptor-binding fragment-associated gene 9 expression and its clinical significance in human testicular cancer,” International Journal of Urology, vol. 16, no. 3, pp. 329–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. C. Gilbert, I. Chandler, B. Summersgill et al., “Genomic gain and over expression of CCL2 correlate with vascular invasion in stage I non-seminomatous testicular germ-cell tumours,” International Journal of Andrology, vol. 34, pp. 114–121, 2011.
  18. K. Horie-Inoue, K. Takayama, H. U. Bono, Y. Ouchi, Y. Okazaki, and S. Inoue, “Identification of novel steroid target genes through the combination of bioinformatics and functional analysis of hormone response elements,” Biochemical and Biophysical Research Communications, vol. 339, no. 1, pp. 99–106, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. A. Milward, R. Papadopoulos, S. J. Fuller et al., “The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth,” Neuron, vol. 9, no. 1, pp. 129–137, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Q. Qiu, A. Ferreira, C. Miller, E. H. Koo, and D. J. Selkoe, “Cell-surface β-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner,” Journal of Neuroscience, vol. 15, no. 3, pp. 2157–2167, 1995. View at Scopus
  21. H. Zheng and E. H. Koo, “The amyloid precursor protein: beyond amyloid,” Molecular Neurodegeneration, vol. 1, no. 1, article 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ho and T. C. Südhof, “Binding of F-spondin to amyloid-β precursor protein: a candidate amyloid-β precursor protein ligand that modulates amyloid-β precursor protein cleavage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2548–2553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. S. L. Sabo, A. F. Ikin, J. D. Buxbaum, and P. Greengard, “The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement,” Journal of Cell Biology, vol. 153, no. 7, pp. 1403–1414, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Bertrand, E. Brouillet, I. Caillé et al., “A short cytoplasmic domain of the amyloid precursor protein induces apoptosis in vitro and in vivo,” Molecular and Cellular Neuroscience, vol. 18, no. 5, pp. 503–511, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Ozaki, Y. Li, H. Kikuchi, T. Tomita, T. Iwatsubo, and A. Nakagawara, “The intracellular domain of the amyloid precursor protein (AICD) enhances the p53-mediated apoptosis,” Biochemical and Biophysical Research Communications, vol. 351, no. 1, pp. 57–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Venkataramani, K. Thiele, C. L. Behnes, et al., “Amyloid precursor protein is a biomarker for transformed human pluripotent stem cells,” The American Journal of Pathology, vol. 180, pp. 1636–1652, 2012.
  27. J. W. Moul, W. F. McCarthy, E. B. Fernandez, and I. A. Sesterhenn, “Percentage of embryonal carcinoma and of vascular invasion predicts pathological stage in clinical stage I nonseminomatous testicular cancer,” Cancer Research, vol. 54, no. 2, pp. 362–364, 1994. View at Scopus
  28. L. Amigoni, M. Ceriani, F. Belotti, G. Minopoli, and E. Martegani, “Activation of amyloid precursor protein processing by growth factors is dependent on Ras GTPase activity,” Neurochemical Research, vol. 36, no. 3, pp. 392–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. C. L. Arteaga, “Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia,” Seminars in Oncology, vol. 29, no. 5, pp. 3–9, 2002. View at Scopus
  30. M. Moroni, S. Veronese, R. Schiavo et al., “Epidermal growth factor receptor expression and activation in nonseminomatous germ cell tumors,” Clinical Cancer Research, vol. 7, no. 9, pp. 2770–2775, 2001. View at Scopus
  31. L. Mándoky, L. Géczi, I. Bodrogi et al., “Clinical relevance of HER-2/neu expression in germ-cell testicular tumors,” Anticancer Research, vol. 24, no. 4, pp. 2219–2224, 2004. View at Scopus