About this Journal Submit a Manuscript Table of Contents
Advances in Urology
Volume 2013 (2013), Article ID 401750, 6 pages
http://dx.doi.org/10.1155/2013/401750
Review Article

Wt-1 Expression Linked to Nitric Oxide Availability during Neonatal Obstructive Nephropathy

1Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500, Mendoza, Argentina
2National Council of Scientific and Technical Research of Argentina (IMBECU-CONICET), CP 5500, Mendoza, Argentina

Received 30 July 2013; Revised 27 September 2013; Accepted 30 September 2013

Academic Editor: M. Hammad Ather

Copyright © 2013 Luciana Mazzei and Walter Manucha. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Hernández Herrera, A. M. Aguirre Cavazos, H. Fuentes Vélez, C. Rodriguez Padilla, L. Trejo Ávila, and P. Zapata Benavides, “WT1: Sexo, vida y muerte,” Ciencia UANL, vol. 7, no. 3, 2004.
  2. A. Hossain and G. F. Saunders, “The human sex-determining gene SRY is a direct target of WT1,” The Journal of Biological Chemistry, vol. 276, no. 20, pp. 16817–16823, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Florio, E. Cesaro, G. Montano, P. Izzo, C. Miles, and P. Costanzo, “Biochemical and functional interaction between ZNF224 and ZNF255, two members of the Krüppel-like zinc-finger protein family and WT1 protein isoforms,” Human Molecular Genetics, vol. 19, no. 18, Article ID ddq270, pp. 3544–3556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Scharnhorst, P. Dekker, A. J. Van Der Eb, and A. G. Jochemsen, “Internal translation initiation generates novel WT1 protein isoforms with distinct biological properties,” The Journal of Biological Chemistry, vol. 274, no. 33, pp. 23456–23462, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Haber, R. L. Sohn, A. J. Buckler, J. Pelletier, K. M. Call, and D. E. Housman, “Alternative splicing and genomic structure of the Wilms tumor gene WT1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 21, pp. 9618–9622, 1991. View at Scopus
  6. Y. Ye, B. Raychaudhuri, A. Gurney, C. E. Campbell, and B. R. G. Williams, “Regulation of WT1 by phosphorylation: inhibition of DNA binding, alteration of transcriptional activity and cellular translocation,” The EMBO Journal, vol. 15, no. 20, pp. 5606–5615, 1996. View at Scopus
  7. M. Marcet-Palacios, F. Davoine, D. J. Adamko, R. Moqbel, and A. D. Befus, “Human lymphocytes express the transcriptional regulator, Wilms tumor 1: the role of WT1 in mediating nitric oxide-dependent repression of lymphocyte proliferation,” Biochemical and Biophysical Research Communications, vol. 363, no. 2, pp. 283–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Pritchard-Jones, S. Fleming, D. Davidson et al., “The candidate Wilms' tumour gene is involved in genitourinary development,” Nature, vol. 346, no. 6280, pp. 194–197, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. Kreidberg, H. Sariola, J. M. Loring et al., “WT-1 is required for early kidney development,” Cell, vol. 74, no. 4, pp. 679–691, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. W. Hsueh, K. Eisenhauer, S.-Y. Chun, S.-Y. Hsu, and H. Billig, “Gonadal cell apoptosis,” Recent Progress in Hormone Research, vol. 51, pp. 433–455, 1996. View at Scopus
  11. J. A. Kreidberg, “WT1 and kidney progenitor cells,” Organogenesis, vol. 6, no. 2, pp. 61–70, 2010. View at Scopus
  12. C. Englert, M. Vidal, S. Maheswaran et al., “Truncated WT1 mutants alter the subnuclear localization of the wild-type protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 26, pp. 11960–11964, 1995. View at Publisher · View at Google Scholar · View at Scopus
  13. A. J. Buckler, J. Pelletier, D. A. Haber, T. Glaser, and D. E. Housman, “Isolation, characterization, and expression of the murine Wilms' tumor gene (WT1) during kidney development,” Molecular and Cellular Biology, vol. 11, no. 3, pp. 1707–1712, 1991. View at Scopus
  14. E. Miller-Hodges and P. Hohenstein, “WT1 in disease: shifting the epithelial-mesenchymal balance,” Journal of Pathology, vol. 226, no. 2, pp. 229–240, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Mazzei, I. M. García, V. Cacciamani, M. E. Benardón, and W. Manucha, “WT-1 mRNA expression is modulated by nitric oxide availabilityand Hsp70 interaction after neonatal unilateral ureteral obstruction,” Biocell, vol. 34, no. 3, pp. 121–132, 2010. View at Scopus
  16. H. Liapis, “Biology of congenital obstructive nephropathy,” Neprhon. Experimental Nephrology, vol. 93, no. 3, pp. e87–91, 2003. View at Scopus
  17. P. Trnka, M. J. Hiatt, L. Ivanova, A. F. Tarantal, and D. G. Matsell, “Phenotypic transition of the collecting duct epithelium in congenital urinary tract obstruction,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 696034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. E. Power, B. T. Doyle, D. Higgins, H. R. Brady, J. M. Fitzpatrick, and R. W. G. Watson, “Mechanical deformation induced apoptosis in human proximal renal tubular epithelial cells is caspase dependent,” Journal of Urology, vol. 171, no. 1, pp. 457–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Cachat, B. Lange-Sperandio, A. Y. Chang et al., “Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss,” Kidney International, vol. 63, no. 2, pp. 564–575, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Manucha, “Biochemical-molecular markers in unilateral ureteral obstruction,” Biocell, vol. 31, no. 1, pp. 1–12, 2007. View at Scopus
  21. A. Dendooven, D. A. Ishola Jr., T. Q. Nguyen et al., “Oxidative stress in obstructive nephropathy,” International Journal of Experimental Pathology, vol. 92, no. 3, pp. 202–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Manucha, L. Carrizo, C. Ruete, H. Molina, and P. Vallés, “Angiotensin II type I antagonist on oxidative stress and heat shock protein 70 (HSP 70) expression in obstructive nephropathy,” Cellular and Molecular Biology, vol. 51, no. 6, pp. 547–555, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. L. J. Mazzei, I. M. García, L. Altamirano, N. G. Docherty, and W. Manucha, “Rosuvastatin preserves renal structure following unilateral ureteric obstruction in the neonatal rat,” American Journal of Nephrology, vol. 35, no. 2, pp. 103–113, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Djudjaj, C. Chatziantoniou, U. Raffetseder et al., “Notch-3 receptor activation drives inflammation and fibrosis following tubulointerstitial kidneyinjury,” The Journal of Pathology, vol. 228, no. 3, pp. 286–299, 2012.
  25. N. Liu, S. He, E. Tolbert, R. Gong, G. Bayliss, and S. Zhuang, “Suramin alleviates glomerular injury and inflammation in the remnant kidney,” PLoS ONE, vol. 7, no. 4, Article ID e36194, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. V. Filiopoulos and D. Vlassopoulos, “Inflammatory syndrome in chronic kidney disease: pathogenesis and influence on outcomes,” Inflammation and Allergy—Drug Targets, vol. 8, no. 5, pp. 369–382, 2009. View at Scopus
  27. R. L. Chevalier, M. S. Forbes, and B. A. Thornhill, “Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy,” Kidney International, vol. 75, no. 11, pp. 1145–1152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. R. L. Chevalier, “Pathophysiology of obstructive nephropathy in the newborn,” Seminars in Nephrology, vol. 18, no. 6, pp. 585–593, 1998. View at Scopus
  29. R. L. Chevalier, B. A. Thornhill, A. Y. Chang, F. Cachat, and A. Lackey, “Recovery from release of ureteral obstruction in the rat: relationship to nephrogenesis,” Kidney International, vol. 61, no. 6, pp. 2033–2043, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. W. Chan, R. J. Krieg Jr., K. Ward, F. Santos Jr., K.-C. Lin, and J. C. M. Chan, “Progression after release of obstructive nephropathy,” Pediatric Nephrology, vol. 16, no. 3, pp. 238–244, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Manucha, F. Kurbán, L. Mazzei et al., “eNOS/Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy,” European Journal of Pharmacology, vol. 650, no. 2-3, pp. 487–495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Johannesen, A. E. Karlsen, F. Pociot, S. G. Roenn, and J. Nerup, “Strain dependent rat iNOS promoter activity—correlation to identified WT1 transcription factor binding site,” Autoimmunity, vol. 36, no. 3, pp. 167–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Manucha and P. G. Vallés, “Cytoprotective role of nitric oxide associated with Hsp70 expression in neonatal obstructive nephropathy,” Nitric Oxide, vol. 18, no. 3, pp. 204–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. F. C. Cormack-Aboud, P. T. Brinkkoetter, J. W. Pippin, S. J. Shankland, and R. V. Durvasula, “Rosuvastatin protects against podocyte apoptosis in vitro,” Nephrology Dialysis Transplantation, vol. 24, no. 2, pp. 404–412, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M.-S. Zhou, I. H. Schuman, E. A. Jaimes, and L. Raij, “Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-β, and fibronectin with concomitant increase in nitric oxide bioavailability,” American Journal of Physiology, vol. 295, no. 1, pp. F53–F59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. I. M. Garcia, L. Mazzei, M. E. Benardon et al., “Caveolin-1-eNOS/Hsp70 interactions mediate rosuvastatin antifibrotic effects in neonatal obstructive nephropathy,” Nitric Oxide, vol. 27, no. 2, pp. 95–105, 2012. View at Publisher · View at Google Scholar
  37. A. Gianella, E. Nobili, M. Abbate et al., “Rosuvastatin treatment prevents progressive kidney inflammation and fibrosis in stroke-prone rats,” American Journal of Pathology, vol. 170, no. 4, pp. 1165–1177, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Shepherd, D. B. Hunninghake, E. A. Stein et al., “Safety of rosuvastatin,” American Journal of Cardiology, vol. 94, no. 7, pp. 882–888, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Xu, S. Ruan, X. Wu, H. Chen, K. Zheng, and B. Fu, “Autophagy and apoptosis in tubular cells following unilateral ureteral obstruction are associated with mitochondrial oxidative stress,” International Journal of Molecular Medicine, vol. 31, no. 3, pp. 628–636, 2013.
  40. Y.-M. Kim, C. A. Bombeck, and T. R. Billiar, “Nitric oxide as a bifunctional regulator of apoptosis,” Circulation Research, vol. 84, no. 3, pp. 253–256, 1999. View at Scopus
  41. L. Mazzei, I. M. Garcia, and W. Manucha, “Moduladores de fibrosis y apoptosis asociados a la disponibilidad de ON. Efecto de rosuvastatina en nefropatia obstructiva neonatal,” Bioanalisis, vol. 6, no. 34, pp. 20–26, 2010.
  42. W. Manucha, L. Oliveros, L. Carrizo, A. Seltzer, and P. Vallés, “Losartan modulation on NOS isoforms and COX-2 expression in early renal fibrogenesis in unilateral obstruction,” Kidney International, vol. 65, no. 6, pp. 2091–2107, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Maheswaran, C. Englert, G. Zheng et al., “Inhibition of cellular proliferation by the Wilms tumor suppressor WT1 requires association with the inducible chaperone Hsp70,” Genes and Development, vol. 12, no. 8, pp. 1108–1120, 1998. View at Scopus
  44. M. Elli, O. Söylemezoglu, D. Erbas et al., “Plasma and urine nitric oxide levels in healthy Turkish children,” Pediatric Nephrology, vol. 20, no. 11, pp. 1605–1609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. M. S. Forbes, B. A. Thornhill, M. H. Park, and R. L. Chevalier, “Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury,” American Journal of Pathology, vol. 170, no. 1, pp. 87–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. M. W. Mayo, C.-Y. Wang, S. S. Drouin et al., “WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene,” The EMBO Journal, vol. 18, no. 14, pp. 3990–4003, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. K. H. Yoo, B. A. Thornhill, M. S. Forbes, and R. L. Chevalier, “Inducible nitric oxide synthase modulates hydronephrosis following partial or complete unilateral ureteral obstruction in the neonatal mouse,” American Journal of Physiology, vol. 298, no. 1, pp. F62–F71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Miyajima, J. Chen, D. P. Poppas, J. Vaughan E.D., and D. Felsen, “Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction,” Kidney International, vol. 59, no. 4, pp. 1290–1303, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Ito, J. Chen, S. V. Seshan et al., “Dietary arginine supplementation attenuates renal damage after relief of unilateral ureteral obstruction in rats,” Kidney International, vol. 68, no. 2, pp. 515–528, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Scharnhorst, P. Dekker, A. J. Van Der Eb, and A. G. Jochemsen, “Physical interaction between Wilms tumor 1 and p73 proteins modulates their functions,” The Journal of Biological Chemistry, vol. 275, no. 14, pp. 10202–10211, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Maheswaran, C. Englert, P. Bennett, G. Heinrich, and D. A. Haber, “The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis,” Genes and Development, vol. 9, no. 17, pp. 2143–2156, 1995. View at Scopus
  52. M. C. Cummings, “Increased p53 mRNA expression in liver and kidney apoptosis,” Biochimica et Biophysica Acta, vol. 1315, no. 2, pp. 100–104, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. J. J. Morrissey and S. Klahr, “Effect of AT2 receptor blockade on the pathogenesis of renal fibrosis,” American Journal of Physiology, vol. 276, no. 1, pp. F39–F45, 1999. View at Scopus
  54. A. Miyajima, J. Chen, C. Lawrence et al., “Antibody to transforming growth factor-β ameliorates tubular apoptosis in unilateral ureteral obstruction,” Kidney International, vol. 58, no. 6, pp. 2301–2313, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. S. O. Topcu, S. Celik, S. Erturhan, A. Erbagci, F. Yagci, and R. Ucak, “Verapamil prevents the apoptotic and hemodynamic changes in response to unilateral ureteral obstruction,” International Journal of Urology, vol. 15, no. 4, pp. 350–355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. Q. Xu, Y. Hu, R. Kleindienst, and G. Wick, “Nitric oxide induces heat-shock protein 70 expression in vascular smooth muscle cells via activation of heat shock factor 1,” Journal of Clinical Investigation, vol. 100, no. 5, pp. 1089–1097, 1997. View at Scopus
  57. P. Goloubinoff and P. D. L. Rios, “The mechanism of Hsp70 chaperones: (entropic) pulling the models together,” Trends in Biochemical Sciences, vol. 32, no. 8, pp. 372–380, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Cheng, C. Cenciarelli, Z. Shao et al., “Human T cell leukemia virus type 1 Tax associates with a molecular chaperone complex containing hTid-1 and Hsp70,” Current Biology, vol. 11, no. 22, pp. 1771–1775, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Jäättelä, “Escaping cell death: survival proteins in cancer,” Experimental Cell Research, vol. 248, no. 1, pp. 30–43, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Li, H. P. Mao, K. L. Ruchalski et al., “Heat stress prevents mitochondrial injury in ATP-depleted renal epithelial cells,” American Journal of Physiology, vol. 283, no. 3, pp. C917–C926, 2002. View at Scopus
  61. N. J. Hegarty, R. W. G. Watson, L. S. Young, A. J. O'Neill, H. R. Brady, and J. M. Fitzpatrick, “Cytoprotective effects of nitrates in a cellular model of hydronephrosis,” Kidney International, vol. 62, no. 1, pp. 70–77, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. D. P. Lane, C. Midgley, and T. Hupp, “Tumour suppressor genes and molecular chaperones,” Philosophical Transactions of the Royal Society of London. Series B, vol. 339, no. 1289, pp. 369–372, 1993. View at Scopus
  63. I. M. Takenaka, S.-M. Leung, S. J. McAndrew, J. P. Brown, and L. E. Hightower, “Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences,” The Journal of Biological Chemistry, vol. 270, no. 34, pp. 19839–19844, 1995. View at Publisher · View at Google Scholar · View at Scopus