About this Journal Submit a Manuscript Table of Contents
Advances in Urology
Volume 2013 (2013), Article ID 578631, 8 pages
http://dx.doi.org/10.1155/2013/578631
Research Article

Assessment of Chromatin Maturity in Human Spermatozoa: Useful Aniline Blue Assay for Routine Diagnosis of Male Infertility

1Histology-Embryology-Biology of Reproduction Laboratory, Medical School, Sfax 3029, Tunisia
2Histology Embryology Research Unit, Faculty of Medicine, Medical School, Sfax 3029, Tunisia
3Gynaecology and Obstetrics Department, Hedi Chaker Academic Hospital, Sfax 3029, Tunisia

Received 17 June 2013; Accepted 3 September 2013

Academic Editor: Axel S. Merseburger

Copyright © 2013 Afifa Sellami et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Sakkas, F. Urner, D. Bizzaro et al., “Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development,” Human Reproduction, vol. 13, no. 4, supplement, pp. 11–19, 1998. View at Scopus
  2. M. E. Hammadeh, M. Stieber, G. Haidl, and W. Schmidt, “Association between sperm cell chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program,” Andrologia, vol. 30, no. 1, pp. 29–35, 1998. View at Scopus
  3. A. D. Esterhuizen, D. R. Franken, J. G. H. Lourens, E. Prinsloo, and L. H. Van Rooyen, “Sperm chromatin packaging as an indicator of in-vitro fertilization rates,” Human Reproduction, vol. 15, no. 3, pp. 657–661, 2000. View at Scopus
  4. C. Roux, C. Tripogney, C. Joanne, et al., “Sperm chromatin packaging as an indicator of in-vitro fertilization rates,” Gynécologie Obstétrique et Fertilité, vol. 32, no. 9, pp. 792–798, 2004.
  5. J.-P. Dadoune, “Expression of mammalian spermatozoal nucleoproteins,” Microscopy Research and Technique, vol. 61, no. 1, pp. 56–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. J. P. Dadoune, “The nuclear status of human sperm cells,” Micron, vol. 26, no. 4, pp. 323–345, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Hekmatdoost, N. Lakpour, and M. R. Sadeghi, “Sperm chromatin integrity: etiologies and mechanisms of abnormality, assays, clinical importance, preventing and repairing damage,” Avicenna Journal of Medical Biotechnology, vol. 1, no. 3, pp. 147–160, 2009.
  8. D. T. Carrell, B. R. Emery, and S. Hammoud, “The aetiology of sperm protamine abnormalities and their potential impact on the sperm epigenome,” International Journal of Andrology, vol. 31, no. 6, pp. 537–545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. W. Hou, D. Chen, and R. S. Jeyendran, “Sperm nuclear maturity in spinal cord-injured men: evaluation by acidic aniline blue stain,” Archives of Physical Medicine and Rehabilitation, vol. 76, no. 5, pp. 444–445, 1995. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Agarwal and T. M. Said, “Role of sperm chromatin abnormalities and DNA damage in male infertility,” Human Reproduction Update, vol. 9, no. 4, pp. 331–345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Auger, M. Mesbah, C. Huber, and J. P. Dadoune, “Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men,” International Journal of Andrology, vol. 13, no. 6, pp. 452–462, 1990. View at Scopus
  12. J. P. Dadoune, M. J. Mayaux, and M. L. Guihard-Moscato, “Correlation between defects in chromatin condensation of human spermatozoa stained by aniline blue and semen characteristics,” Andrologia, vol. 20, no. 3, pp. 211–217, 1988. View at Scopus
  13. O. Hingst, S. Blottner, and C. Franz, “Chromatin condensation in cat spermatozoa during epididymal transit as studied by aniline blue and acridine orange staining,” Andrologia, vol. 27, no. 5, pp. 275–279, 1995. View at Scopus
  14. M. E. Hammadeh, T. Zeginiadov, P. Rosenbaum, T. Georg, W. Schmidt, and E. Strehler, “Predictive value of sperm chromatin condensation (aniline blue staining) in the assessment of male fertility,” Archives of Andrology, vol. 46, no. 2, pp. 99–104, 2001. View at Scopus
  15. A. R. Talebi, M. R. Moein, N. Tabibnejad, and J. Ghasemzadeh, “Effect of varicocele on chromatin condensation and DNA integrity of ejaculated spermatozoa using cytochemical tests,” Andrologia, vol. 40, no. 4, pp. 245–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. R. Sadeghi, M. Hodjat, N. Lakpour, et al., “Effects of sperm chromatin integrity on fertilization rate and embryo quality following intracytoplasmic sperm injection,” Avicenna Journal of Medical Biotechnology, vol. 1, no. 3, pp. 173–180, 2009.
  17. T. Kazerooni, N. Asadi, L. Jadid et al., “Evaluation of sperm's chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion,” Journal of Assisted Reproduction and Genetics, vol. 26, no. 11-12, pp. 591–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Andreetta, J. C. Stockert, and C. Barrera, “A simple method to detect sperm chromatin abnormalities: cytochemical mechanism and possible value in predicting semen quality in assisted reproductive procedures,” International Journal of Andrology, vol. 18, no. 1, supplement, pp. 23–28, 1995. View at Scopus
  19. N. Hofmann and B. Hilscher, “Use of aniline blue to assess chromatin condensation in morphologically normal spermatozoa in normal and infertile men,” Human Reproduction, vol. 6, no. 7, pp. 979–982, 1991. View at Scopus
  20. C. Foresta, M. Zorzi, M. Rossato, and A. Varotto, “Sperm nuclear instability and staining with aniline blue: abnormal persistance of histones in spermatozoa in infertile men,” International Journal of Andrology, vol. 15, no. 4, pp. 330–337, 1992. View at Scopus
  21. WHO World Health Organization, Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction, Cambridge University Press, 4th edition, 1999.
  22. N. Salsabili, A. Mehrsai, B. Jalalizadeh, et al., “Correlation of sperm nuclear chromatin condensation staining method with semen parameters and sperm functional tests in patients with spinal cord injury, varicocele, and idiopathic infertility,” Urology Journal, vol. 3, no. 1, pp. 32–37, 2006.
  23. A. Sadek, A. S. A. Almohamdy, A. Zaki, M. Aref, S. M. Ibrahim, and T. Mostafa, “Sperm chromatin condensation in infertile men with varicocele before and after surgical repair,” Fertility and Sterility, vol. 95, no. 5, pp. 1705–1708, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Kim, M. J. Kang, S. A. Kim, et al., “The utility of sperm DNA damage assay using toluidine blue and aniline blue staining in routine semen analysis,” Clinical and Experimental Reproductive Medicine, vol. 40, no. 1, pp. 23–28, 2013.
  25. V. W. Aoki, L. Liu, and D. T. Carrell, “Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males,” Human Reproduction, vol. 20, no. 5, pp. 1298–1306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Wong, S. S. Chuan, W. C. Patton, J. D. Jacobson, J. Corselli, and P. J. Chan, “Addition of eosin to the aniline blue assay to enhance detection of immature sperm histones,” Fertility and Sterility, vol. 90, no. 5, pp. 1999–2002, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. S. Park, M. K. Kim, S. H. Lee, et al., “Efficacy of testicular sperm chromatin condensation assay using aniline blue-eosin staining in the IVF-ET cycle,” Clinical and Experimental Reproductive Medicine, vol. 38, no. 3, pp. 142–147, 2011.
  28. S. Leiva, M. Loyola, A. M. Agar, and E. Bustos-Obregón, “Evaluation of DNA/protein status and nuclear maturity of human sperm,” Cytobios, vol. 78, no. 312, pp. 7–18, 1994. View at Scopus
  29. D. R. Franken, C. J. Franken, H. de la Guerre, and A. de Villiers, “Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining,” Andrologia, vol. 31, no. 6, pp. 361–366, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. L. A. Lazaros, G. A. Vartholomatos, E. G. Hatzi et al., “Assessment of sperm chromatin condensation and ploidy status using flow cytometry correlates to fertilization, embryo quality and pregnancy following in vitro fertilization,” Journal of Assisted Reproduction and Genetics, vol. 28, no. 10, pp. 885–891, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Zini, S. Phillips, A. Courchesne et al., “Sperm head morphology is related to high deoxyribonucleic acid stainability assessed by sperm chromatin structure assay,” Fertility and Sterility, vol. 91, no. 6, pp. 2495–2500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Boitrelle, F. Ferfouri, J. M. Petit et al., “Large human sperm vacuoles observed in motile spermatozoa under high magnification: nuclear thumbprints linked to failure of chromatin condensation,” Human Reproduction, vol. 26, no. 7, pp. 1650–1658, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. I. M. Adham, K. Nayernia, E. Burkhardt-Göttges et al., “Teratozoospermia in mice lacking the transition protein 2 (Tnp2),” Molecular Human Reproduction, vol. 7, no. 6, pp. 513–520, 2001. View at Scopus
  34. N. Torregrosa, D. Domínguez-Fandos, M. I. Camejo et al., “Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients,” Human Reproduction, vol. 21, no. 8, pp. 2084–2089, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Tseden, O. Topaloglu, A. Meinhardt et al., “Premature translation of transition protein 2 mRNA causes sperm abnormalities and male infertility,” Molecular Reproduction and Development, vol. 74, no. 3, pp. 273–279, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Nanassy, L. Liu, J. Griffin, and D. T. Carrell, “The clinical utility of the protamine 1/protamine 2 ratio in sperm,” Protein and Peptide Letters, vol. 18, no. 8, pp. 772–777, 2011. View at Scopus
  37. G. N. de Iuliis, L. K. Thomson, L. A. Mitchell et al., “DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress,” Biology of Reproduction, vol. 81, no. 3, pp. 517–524, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. R. T. Schulte, D. A. Ohl, M. Sigman, and G. D. Smith, “Sperm DNA damage in male infertility: etiologies, assays, and outcomes,” Journal of Assisted Reproduction and Genetics, vol. 27, no. 1, pp. 3–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. J. Aitken and G. N. De Iuliis, “On the possible origins of DNA damage in human spermatozoa,” Molecular Human Reproduction, vol. 16, no. 1, Article ID gap059, pp. 3–13, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Erenpreiss, J. Bars, V. Lipatnikova, J. Erenpreisa, and J. Zalkalns, “Comparative study of cytochemical tests for sperm chromatin integrity,” Journal of Andrology, vol. 22, no. 1, pp. 45–53, 2001. View at Scopus
  41. D. Sakkas, E. Mariethoz, G. Manicardi, D. Bizzaro, P. G. Bianchi, and U. Bianchi, “Origin of DNA damage in ejaculated human spermatozoa,” Reviews of Reproduction, vol. 4, no. 1, pp. 31–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Henkel, M. Hajimohammad, T. Stalf et al., “Influence of deoxyribonucleic acid damage on fertilization and pregnancy,” Fertility and Sterility, vol. 81, no. 4, pp. 965–972, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Sakkas, G. Manicardi, P. G. Bianchi, D. Bizzaro, and U. Bianchi, “Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa,” Biology of Reproduction, vol. 52, no. 5, pp. 1149–1155, 1995. View at Scopus
  44. F. Morel, S. Mercier, C. Roux, T. Elmrini, M. C. Clavequin, and J. L. Bresson, “Interindividual variations in the disomy frequencies of human spermatozoa and their correlation with nuclear maturity as evaluated aniline blue staining,” Fertility and Sterility, vol. 69, no. 6, pp. 1122–1127, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Sati, L. Ovari, D. Bennett, S. D. Simon, R. Demir, and G. Huszar, “Double probing of human spermatozoa for persistent histones, surplus cytoplasm, apoptosis and DNA fragmentation,” Reproductive BioMedicine Online, vol. 16, no. 4, pp. 570–579, 2008. View at Scopus
  46. L. Óvári, L. Sati, J. Stronk, A. Borsos, D. C. Ward, and G. Huszar, “Double probing individual human spermatozoa: aniline blue staining for persistent histones and fluorescence in situ hybridization for aneuploidies,” Fertility and Sterility, vol. 93, no. 7, pp. 2255–2261, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Kovanci, T. Kovacs, E. Moretti et al., “FISH assessment of aneuploidy frequencies in mature and immature human spermatozoa classified by the absence or presence of cytoplasmic retention,” Human Reproduction, vol. 16, no. 6, pp. 1209–1217, 2001. View at Scopus
  48. F. Morel, C. Roux, and J. L. Bresson, “Disomy frequency estimated by multicolour fluorescence in situ hybridization, degree of nuclear maturity and teratozoospermia in human spermatozoa,” Reproduction, vol. 121, no. 5, pp. 783–789, 2001. View at Scopus
  49. S. Razavi, M. H. Nasr-Esfahani, M. Mardani, A. Mafi, and A. Moghdam, “Effect of human sperm chromatin anomalies on fertilization outcome post-ICSI,” Andrologia, vol. 35, no. 4, pp. 238–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. R. Sanchez, E. Villagran, J. Risopatron, and R. Celis, “Evaluation of nuclear maturity in human spermatozoa obtained by sperm-preparation methods,” Andrologia, vol. 26, no. 3, pp. 173–176, 1994. View at Scopus
  51. D. le Lannou and Y. Blanchard, “Nuclear maturity and morphology of human spermatozoa selected by Percoll density gradient centrifugation or swim-up procedure,” Journal of Reproduction and Fertility, vol. 84, no. 2, pp. 551–556, 1988. View at Scopus
  52. M. E. Hammadeh, A. Kühnen, A. S. Amer, P. Rosenbaum, and W. Schmidt, “Comparison of sperm preparation methods: effect on chromatin and morphology recovery rates and their consequences on the clinical outcome after in vitro fertilization embryo transfer,” International Journal of Andrology, vol. 24, no. 6, pp. 360–368, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Sakkas, G. C. Manicardi, M. Tomlinson et al., “The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa with chromatin and nuclear DNA anomalies,” Human Reproduction, vol. 15, no. 5, pp. 1112–1116, 2000. View at Scopus
  54. R. R. Henkel, D. R. Franken, C. J. Lombard, and W.-B. Schill, “Selective capacity of glass-wool filtration for the separation of human spermatozoa with condensed chromatin: a possible therapeutic modality for male-factor cases?” Journal of Assisted Reproduction and Genetics, vol. 11, no. 8, pp. 395–400, 1995. View at Publisher · View at Google Scholar · View at Scopus
  55. A. R. Talebi, S. Vahidi, A. Aflatoonian, et al., “Cytochemical evaluation of sperm chromatin and DNA integrity in couples with unexplained recurrent spontaneous abortions,” Andrologia, vol. 44, supplement 1, pp. 462–470, 2012.
  56. C. Jeulin, D. Feneux, and C. Serres, “Sperm factors related to failure of human in-vitro fertilization,” Journal of Reproduction and Fertility, vol. 76, no. 2, pp. 735–744, 1986. View at Scopus
  57. A. D. Esterhuizen, D. R. Franken, J. G. H. Lourens, C. van Zyl, I. I. Müller, and L. H. Van Rooyen, “Chromatin packaging as an indicator of human sperm dysfunction,” Journal of Assisted Reproduction and Genetics, vol. 17, no. 9, pp. 508–514, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Y. Liu and H. W. G. Baker, “Sperm nuclear chromatin normality: relationship with sperm morphology, sperm-zona pellucida binding, and fertilization rates in vitro,” Fertility and Sterility, vol. 58, no. 6, pp. 1178–1184, 1992. View at Scopus
  59. M. H. Nasr-Esfahani, S. Razavi, and M. Mardani, “Relation between different human sperm nuclear maturity tests and in vitro fertilization,” Journal of Assisted Reproduction and Genetics, vol. 18, no. 4, pp. 219–225, 2001. View at Scopus
  60. E. E. Mohamed and M. A. Mohamed, “Effect of sperm chromatin condensation on the outcome of intrauterine insemination in patients with male factor infertility,” Journal of Reproductive Medicine, vol. 57, no. 9-10, pp. 421–426, 2012.
  61. M.-H. Lin, R. Kuo-Kuang Lee, S.-H. Li, C.-H. Lu, F.-J. Sun, and Y.-M. Hwu, “Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates,” Fertility and Sterility, vol. 90, no. 2, pp. 352–359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. R. Oliva, “Protamines and male infertility,” Human Reproduction Update, vol. 12, no. 4, pp. 417–435, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Cho, W. D. Willis, E. H. Goulding et al., “Haploinsufficiency of protamine-1 or -2 causes infertility in mice,” Nature Genetics, vol. 28, no. 1, pp. 82–86, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. M. E. Hammadeh, S. Al-Hasani, S. Doerr et al., “Comparison between chromatin condensation and morphology from testis biopsy extracted and ejaculated spermatozoa and their relationship to ICSI outcome,” Human Reproduction, vol. 14, no. 2, pp. 363–367, 1999. View at Scopus
  65. J. Auger, D. Schoevaert, I. Negulesco, and J. Dadoune, “The nuclear status of human sperm cells by TEM image cytometry: nuclear shape and chromatin texture in semen samples from fertile and infertile men,” Journal of Andrology, vol. 14, no. 6, pp. 456–463, 1993. View at Scopus