About this Journal Submit a Manuscript Table of Contents
Autism Research and Treatment
Volume 2012 (2012), Article ID 835847, 11 pages
http://dx.doi.org/10.1155/2012/835847
Review Article

Meditation as a Potential Therapy for Autism: A Review

1Office of Clinical Research, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
2Naam Biomedical Society, 228 Park Avenue S21210, New York, NY 10003, USA
3Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA

Received 27 November 2011; Revised 21 March 2012; Accepted 4 April 2012

Academic Editor: Herbert Roeyers

Copyright © 2012 Sonia Sequeira and Mahiuddin Ahmed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Health Disorders-TR, American Psychiatric, 2000.
  2. D. S. Mandell and R. Palmer, “Differences among states in the identification of autistic spectrum disorders,” Archives of Pediatrics and Adolescent Medicine, vol. 159, no. 3, pp. 266–269, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. G. Oliveira, A. Ataide, C. Marques et al., “Epidemiology of autism spectrum disorder in Portugal: prevalence, clinical characterization, and medical conditions,” Developmental Medicine and Child Neurology, vol. 49, no. 10, pp. 726–733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. V. C. N. Wong and S. L. H. Hui, “Epidemiological study of autism spectrum disorder in China,” Journal of Child Neurology, vol. 23, no. 1, pp. 67–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Centers for Disease Control and Prevention (U.S.), Prevalence of Autism Spectrum Disorders—Autism and Developmental Disabilities Monitoring Network, Six Sites, United States, 2000, Centers for Disease Control and Prevention (CDC) (U.S.), 2009.
  6. T. S. Brugha, S. McManus, J. Bankart et al., “Epidemiology of autism spectrum disorders in adults in the community in England,” Archives of General Psychiatry, vol. 68, no. 5, pp. 459–465, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. S. Kim, B. L. Leventhal, Y. J. Koh, et al., “Prevalence of autism spectrum disorders in a total population sample,” American Journal of Psychiatry, vol. 168, no. 9, pp. 904–912, 2011. View at Publisher · View at Google Scholar
  8. S. A. Samadi, A. Mahmoodizadeh, and R. McConkey, “A national study of the prevalence of autism among five-year-old children in Iran,” Autism, vol. 16, no. 1, pp. 5–14, 2012.
  9. DHHS, Interventions for Autism Spectrum Disorders: State of the Evidence-Report of the Children's Services Evidence-Based Practice Advisory Committee, Department of Health and Human Services and Maine Department of Education, 2009.
  10. M. L. Ganz, “The lifetime distribution of the incremental societal costs of autism,” Archives of Pediatrics and Adolescent Medicine, vol. 161, no. 4, pp. 343–349, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. E. Moffitt, L. Arseneault, D. Belsky et al., “A gradient of childhood self-control predicts health, wealth, and public safety,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 7, pp. 2693–2698, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Begley, “I can't think!,” Newsweek, pp. 28–33, 2011.
  13. A. Diamond and K. Lee, “Interventions shown to aid executive function development in children 4 to 12 years old,” Science, vol. 333, no. 6045, pp. 959–964, 2011.
  14. E. A. Taylor and M. Rutter, Child and Adolescent Psychiatry, Blackwell Science, Oxford, UK, 2002.
  15. A. R. Haig, E. Gordon, J. J. Wright, R. A. Meares, and H. Bahramali, “Synchronous cortical gamma-band activity in task-relevant cognition,” NeuroReport, vol. 11, no. 4, pp. 669–675, 2000. View at Scopus
  16. M. A. Bell and C. D. Wolfe, “Changes in brain functioning from infancy to early childhood: evidence from EEG power and coherence during working memory tasks,” Developmental Neuropsychology, vol. 31, no. 1, pp. 21–38, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. M. Swingler, M. T. Willoughby, and S. D. Calkins, “EEG power and coherence during preschoolers's performance of an executive function battery,” Developmental Psychobiology, vol. 53, no. 8, pp. 771–784, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Bosl, A. Tierney, H. Tager-Flusberg, and C. Nelson, “EEG complexity as a biomarker for autism spectrum disorder risk,” BMC Medicine, vol. 9, article 18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. I. Dinstein, K. Pierce, L. Eyler et al., “Disrupted neural synchronization in toddlers with autism,” Neuron, vol. 70, no. 6, pp. 1218–1225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. C. Hazlett, M. D. Poe, G. Gerig et al., “Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years,” Archives of General Psychiatry, vol. 68, no. 5, pp. 467–476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. W. Evans, K. Canavera, F. L. Kleinpeter, E. Maccubbin, and K. Taga, “The fears, phobias and anxieties of children with autism spectrum disorders and Down syndrome: comparisons with developmentally and chronologically age matched children,” Child Psychiatry and Human Development, vol. 36, no. 1, pp. 3–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Markram and H. Markram, “The intense world theory—a unifying theory of the neurobiology of autism,” Frontiers in Human Neuroscience, vol. 4, article 224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Travis and J. Shear, “Focused attention, open monitoring and automatic self-transcending: categories to organize meditations from Vedic, Buddhist and Chinese traditions,” Consciousness and Cognition, vol. 19, no. 4, pp. 1110–1118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. Davidson, J. Kabat-Zinn, J. Schumacher et al., “Alterations in brain and immune function produced by mindfulness meditation,” Psychosomatic Medicine, vol. 65, no. 4, pp. 564–570, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Epel, J. Daubenmier, J. T. Moskowitz, S. Folkman, and E. Blackburn, “Can meditation slow rate of cellular aging? Cognitive stress, mindfulness, and telomeres,” Annals of the New York Academy of Sciences, vol. 1172, pp. 34–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. T. W. W. Pace, L. T. Negi, D. D. Adame et al., “Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress,” Psychoneuroendocrinology, vol. 34, no. 1, pp. 87–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. R. B. Effros, “Telomere/telomerase dynamics within the human immune system: effect of chronic infection and stress,” Experimental Gerontology, vol. 46, no. 2-3, pp. 135–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. T. L. Jacobs, E. S. Epel, J. Lin et al., “Intensive meditation training, immune cell telomerase activity, and psychological mediators,” Psychoneuroendocrinology, vol. 36, no. 5, pp. 664–681, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. D. S. Shannahoff-Khalsa, L. E. Ray, S. Levine, C. C. Gallen, B. J. Schwartz, and J. J. Sidorowich, “Randomized controlled trial of yogic meditation techniques for patients with obsessive-compulsive disorder,” CNS Spectrums, vol. 4, no. 12, pp. 34–47, 1999. View at Scopus
  30. R. P. Brown and P. L. Gerbarg, “Sudarshan Kriya yogic breathing in the treatment of stress, anxiety, and depression: part I—neurophysiologic model,” Journal of Alternative and Complementary Medicine, vol. 11, no. 1, pp. 189–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Bormann, S. Becker, M. Gershwin et al., “Relationship of frequent mantram repetition to emotional and spiritual well-being in healthcare workers,” Journal of Continuing Education in Nursing, vol. 37, no. 5, pp. 218–224, 2006. View at Scopus
  32. M. B. Ospina, K. Bond, M. Karkhaneh et al., “Clinical trials of meditation practices in health care: characteristics and quality,” Journal of Alternative and Complementary Medicine, vol. 14, no. 10, pp. 1199–1213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. S. I. Nidich, M. V. Rainforth, D. A. F. Haaga et al., “A randomized controlled trial on effects of the transcendental meditation program on blood pressure, psychological distress, and coping in young adults,” American Journal of Hypertension, vol. 22, no. 12, pp. 1326–1331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Z. V. Segal, P. Bieling, T. Young et al., “Antidepressant monotherapy vs sequential pharmacotherapy and mindfulness-based cognitive therapy, or placebo, for relapse prophylaxis in recurrent depression,” Archives of General Psychiatry, vol. 67, no. 12, pp. 1256–1264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Zeidan, S. K. Johnson, N. S. Gordon, and P. Goolkasian, “Effects of brief and sham mindfulness meditation on mood and cardiovascular variables,” Journal of Alternative and Complementary Medicine, vol. 16, no. 8, pp. 867–873, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Orme-Johnson, “Evidence that the transcendental meditation program prevents or decreases diseases of the nervous system and is specifically beneficial for epilepsy,” Medical Hypotheses, vol. 67, no. 2, pp. 240–246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Z. Rosenthal, S. Grosswald, R. Ross, and N. Rosenthal, “Effects of transcendental meditation in veterans of operation enduring freedom and operation Iraqi freedom with posttraumatic stress disorder: a pilot study,” Military Medicine, vol. 176, no. 6, pp. 626–630, 2011.
  38. J. E. Bormann, A. L. Gifford, M. Shively et al., “Effects of spiritual mantram repetition on HIV outcomes: a randomized controlled trial,” Journal of Behavioral Medicine, vol. 29, no. 4, pp. 359–376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. D. W. Orme-Johnson, R. H. Schneider, Y. D. Son, S. Nidich, and Z. H. Cho, “Neuroimaging of meditation's effect on brain reactivity to pain,” NeuroReport, vol. 17, no. 12, pp. 1359–1363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Zeidan, K. T. Martucci, R. A. Kraft, N. S. Gordon, J. G. Mchaffie, and R. C. Coghill, “Brain mechanisms supporting the modulation of pain by mindfulness meditation,” Journal of Neuroscience, vol. 31, no. 14, pp. 5540–5548, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. C. E. F. Brayant, The Yoga Sutras of Patañjali, North Point Press, 2009.
  42. E. Easwaran, Essence of the Upanishads: A Key to Indian Spirituality, Nilgiri Press, 2009.
  43. R. Griffith, The Rig-Veda, Evinity Publishing, 2009.
  44. V. Bandhu, A Vedic Word-Concordance, Vishveshvaranand Vedic Research Institute, 1995.
  45. H. U. P. A. M. Franceschini, “Bloomfield's 1906 A Vedic Concordance,” 2005, http://www.people.fas.harvard.edu/~witzel/VedicConcordance/ReadmeEng.html.
  46. T. Nader, Ramayan in Human Physiology, Maharishi University of Management Press, 2011.
  47. D. Shannahoff-Khalsa, Kundalini Yoga Meditation for Complex Psychiatric Disorders: Techniques Specific for Treating the Psychoses, Personality, and Pervasive Developmental Disorders, W. W. Norton & Company, New York, NY, USA, 2010.
  48. L. A. Schmidt, L. J. Trainor, and D. L. Santesso, “Development of frontal electroencephalogram (EEG) and heart rate (ECG) responses to affective musical stimuli during the first 12 months of post-natal life,” Brain and Cognition, vol. 52, no. 1, pp. 27–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Iacoboni and M. Dapretto, “The mirror neuron system and the consequences of its dysfunction,” Nature Reviews Neuroscience, vol. 7, no. 12, pp. 942–951, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. J. H. G. Williams, A. Whiten, T. Suddendorf, and D. I. Perrett, “Imitation, mirror neurons and autism,” Neuroscience and Biobehavioral Reviews, vol. 25, no. 4, pp. 287–295, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. L. M. Oberman, E. M. Hubbard, J. P. McCleery, E. L. Altschuler, V. S. Ramachandran, and J. A. Pineda, “EEG evidence for mirror neuron dysfunction in autism spectrum disorders,” Cognitive Brain Research, vol. 24, no. 2, pp. 190–198, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Hadjikhani, R. M. Joseph, J. Snyder, and H. Tager-Flusberg, “Anatomical differences in the mirror neuron system and social cognition network in autism,” Cerebral Cortex, vol. 16, no. 9, pp. 1276–1282, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. L. M. Oberman, V. S. Ramachandran, and J. A. Pineda, “Modulation of mu suppression in children with autism spectrum disorders in response to familiar or unfamiliar stimuli: the mirror neuron hypothesis,” Neuropsychologia, vol. 46, no. 5, pp. 1558–1565, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Schulte-Ruther, E. Greimel, H. J. Markowitsch et al., “Dysfunctions in brain networks supporting empathy: an fMRI study in adults with autism spectrum disorders,” Social Neuroscience, vol. 6, no. 1, pp. 1–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. V. S. Ramachandran and E. L. Seckel, “Synchronized dance therapy to stimulate mirror neurons in autism,” Medical Hypotheses, vol. 76, no. 1, pp. 150–151, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Baron-Cohen, A. M. Leslie, and U. Frith, “Does the autistic child have a “theory of mind”?” Cognition, vol. 21, no. 1, pp. 37–46, 1985. View at Scopus
  57. S. Baron-Cohen, H. A. Ring, E. T. Bullmore, S. Wheelwright, C. Ashwin, and S. C. R. Williams, “The amygdala theory of autism,” Neuroscience and Biobehavioral Reviews, vol. 24, no. 3, pp. 355–364, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. M. V. Lombardo, J. L. Barnes, S. J. Wheelwright, and S. Baron-Cohen, “Self-referential cognition and empathy in austism,” PLoS ONE, vol. 2, no. 9, article e883, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. E. Greimel, M. Schulte-Ruther, T. Kircher et al., “Neural mechanisms of empathy in adolescents with autism spectrum disorder and their fathers,” NeuroImage, vol. 49, no. 1, pp. 1055–1065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. B. Newberg, N. Wintering, D. S. Khalsa, H. Roggenkamp, and M. R. Waldman, “Meditation effects on cognitive function and cerebral blood flow in subjects with memory loss: a preliminary study,” Journal of Alzheimer 's Disease, vol. 20, no. 2, pp. 517–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Luders, K. L. Narr, P. M. Thompson, and A. W. Toga, “Neuroanatomical correlates of intelligence,” Intelligence, vol. 37, no. 2, pp. 156–163, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. K. L. Narr, R. P. Woods, P. M. Thompson et al., “Relationships between IQ and regional cortical gray matter thickness in healthy adults,” Cerebral Cortex, vol. 17, no. 9, pp. 2163–2171, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. E. T. Westlye, A. Lundervold, H. Rootwelt, A. J. Lundervold, and L. T. Westlye, “Increased hippocampal default mode synchronization during rest in middle-aged and elderly APOE ε4 carriers: relationships with memory performance,” Journal of Neuroscience, vol. 31, no. 21, pp. 7775–7783, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Weinstein, L. Ben-Sira, Y. Levy et al., “Abnormal white matter integrity in young children with autism,” Human Brain Mapping, vol. 32, no. 4, pp. 534–543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. J. R. Hughes, “Autism: the first firm finding = underconnectivity?” Epilepsy and Behavior, vol. 11, no. 1, pp. 20–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. G. L. Wallace, N. Dankner, L. Kenworthy, J. N. Giedd, and A. Martin, “Age-related temporal and parietal cortical thinning in autism spectrum disorders,” Brain, vol. 133, no. 12, pp. 3745–3754, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. M. L. Bauman and T. L. Kemper, “Neuroanatomic observations of the brain in autism: a review and future directions,” International Journal of Developmental Neuroscience, vol. 23, no. 2-3, pp. 183–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. S. M. Wolosin, M. E. Richardson, J. G. Hennessey, M. B. Denckla, and S. H. Mostofsky, “Abnormal cerebral cortex structure in children with ADHD,” Human Brain Mapping, vol. 30, no. 1, pp. 175–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. T. Jubault, J. F. Gagnon, S. Karama et al., “Patterns of cortical thickness and surface area in early Parkinson's disease,” NeuroImage, vol. 55, no. 2, pp. 462–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Schulte-Ruther, H. J. Markowitsch, G. R. Fink, and M. Piefke, “Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: a functional magnetic resonance imaging approach to empathy,” Journal of Cognitive Neuroscience, vol. 19, no. 8, pp. 1354–1372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Mizuno, Y. Liu, D. L. Williams, et al., “The neural basis of deictic shifting in linguistic perspective-taking in high-functioning autism,” Brain, vol. 134, no. 8, pp. 2422–2435, 2011.
  72. T. A. Avino and J. J. Hutsler, “Abnormal cell patterning at the cortical gray-white matter boundary in autism spectrum disorders,” Brain Research, vol. 1360, pp. 138–146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. C. N. Vidal, R. Nicolson, T. J. DeVito et al., “Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity,” Biological Psychiatry, vol. 60, no. 3, pp. 218–225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Schatz and R. Buzan, “Decreased corpus callosum size in sickle cell disease: relationship with cerebral infarcts and cognitive functioning,” Journal of the International Neuropsychological Society, vol. 12, no. 1, pp. 24–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Mottron, M. Dawson, I. Soulières, B. Hubert, and J. Burack, “Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception,” Journal of Autism and Developmental Disorders, vol. 36, no. 1, pp. 27–43, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. B. Gepner and F. Feron, “Autism: a world changing too fast for a mis-wired brain?” Neuroscience and Biobehavioral Reviews, vol. 33, no. 8, pp. 1227–1242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. S. Wass, “Distortions and disconnections: disrupted brain connectivity in autism,” Brain and Cognition, vol. 75, no. 1, pp. 18–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. M. A. O'Riordan, K. C. Plaisted, J. Driver, and S. Baron-Cohen, “Superior visual search in autism,” Journal of Experimental Psychology, vol. 27, no. 3, pp. 719–730, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Bonnel, L. Mottron, I. Peretz, M. Trudel, E. Gallun, and A. M. Bonnel, “Enhanced pitch sensitivity in individuals with autism: a signal detection analysis,” Journal of Cognitive Neuroscience, vol. 15, no. 2, pp. 226–235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. J. M. Foxton, M. E. Stewart, L. Barnard et al., “Absence of auditory “global interference” in autism,” Brain, vol. 126, no. 12, pp. 2703–2709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. K. Markram, T. Rinaldi, D. L. Mendola, C. Sandi, and H. Markram, “Abnormal fear conditioning and amygdala processing in an animal model of autism,” Neuropsychopharmacology, vol. 33, no. 4, pp. 901–912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Rinaldi, C. Perrodin, and H. Markram, “Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism,” Frontiers in Neural Circuits, vol. 2, article 4, 2008. View at Publisher · View at Google Scholar
  83. X. Ming, P. O. Julu, M. Brimacombe, S. Connor, and M. L. Daniels, “Reduced cardiac parasympathetic activity in children with autism,” Brain and Development, vol. 27, no. 7, pp. 509–516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. B. A. Corbett, S. Mendoza, M. Abdullah, J. A. Wegelin, and S. Levine, “Cortisol circadian rhythms and response to stress in children with autism,” Psychoneuroendocrinology, vol. 31, no. 1, pp. 59–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. S. H. Fatemi, A. R. Halt, G. Realmuto et al., “Purkinje cell size is reduced in cerebellum of patients with autism,” Cellular and Molecular Neurobiology, vol. 22, no. 2, pp. 171–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. G. Allen and E. Courchesne, “Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism,” American Journal of Psychiatry, vol. 160, no. 2, pp. 262–273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. A. J. Silva, R. Paylor, J. M. Wehner, and S. Tonegawa, “Impaired spatial learning in α-calcium-calmodulin kinase II mutant mice,” Science, vol. 257, no. 5067, pp. 206–211, 1992. View at Scopus
  88. A. J. Silva, C. F. Stevens, S. Tonegawa, and Y. Wang, “Deficient hippocampal long-term potentiation in α-calcium-calmodulin kinase II mutant mice,” Science, vol. 257, no. 5067, pp. 201–206, 1992. View at Scopus
  89. C. M. Durand, C. Betancur, T. M. Boeckers et al., “Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders,” Nature Genetics, vol. 39, no. 1, pp. 25–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Zhang, J. M. Milunsky, S. Newton et al., “A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export,” Journal of Neuroscience, vol. 29, no. 35, pp. 10843–10854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Giza, M. J. Urbanski, F. Prestori et al., “Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2,” Journal of Neuroscience, vol. 30, no. 44, pp. 14805–14816, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. M. R. Etherton, K. Tabuchi, M. Sharma, J. Ko, and T. C. Südhof, “An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus,” The EMBO Journal, vol. 30, no. 14, pp. 2908–2919, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. D. A. Rossignol, “Novel and emerging treatments for autism spectrum disorders: a systematic review.,” Annals of Clinical Psychiatry, vol. 21, no. 4, pp. 213–236, 2009. View at Scopus
  94. C. H. Kroenke, E. Epel, N. Adler, et al., “Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children,” Psychosomatic Medicine, vol. 73, no. 7, pp. 533–540, 2011.
  95. G. Kaati, L. O. Bygren, M. Pembrey, and M. Sjöström, “Transgenerational response to nutrition, early life circumstances and longevity,” European Journal of Human Genetics, vol. 15, no. 7, pp. 784–790, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. T. L. Roth, F. D. Lubin, A. J. Funk, and J. D. Sweatt, “Lasting epigenetic influence of early-life adversity on the BDNF gene,” Biological Psychiatry, vol. 65, no. 9, pp. 760–769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. N. S. C. O. T. D. Child, “Early Experiences Can Alter Gene Expression and Affect Long-Term Development,” National Scientific Council on the Developing Child, Working Paper No. 10, 2010, http://developingchild.harvard.edu/.
  98. A. Harris and J. Seckl, “Glucocorticoids, prenatal stress and the programming of disease,” Hormones and Behavior, vol. 59, no. 3, pp. 279–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. S. Cohen, D. Janicki-Deverts, and G. E. Miller, “Psychological stress and disease,” Journal of the American Medical Association, vol. 298, no. 14, pp. 1685–1687, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Cebioglu, H. H. Schild, and O. Golubnitschaja, “Diabetes mellitus as a risk factor for cancer: stress or viral etiology?” Infectious Disorders, vol. 8, no. 2, pp. 76–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. O. W. Wolkowitz, E. S. Epel, V. I. Reus, and S. H. Mellon, “Depression gets old fast: do stress and depression accelerate cell aging?” Depression and Anxiety, vol. 27, no. 4, pp. 327–338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. P. G. Green, X. Chen, P. Alvarez, et al., “Early-life stress produces muscle hyperalgesia and nociceptor sensitization in the adult rat,” Pain, vol. 152, no. 11, pp. 2549–2556, 2011. View at Publisher · View at Google Scholar
  103. T. E. Peters and G. K. Fritz, “Psychological considerations of the child with asthma,” Pediatric Clinics of North America, vol. 58, no. 4, pp. 921–935, 2011.
  104. J. Needham and L. Wang, Science and Civilisation in China, Cambridge University Press, 1954.
  105. C. M. Tipton, “Susruta of India, an unrecognized contributor to the history of exercise physiology,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1553–1556, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Shang, “Emerging paradigms in mind-body medicine,” Journal of Alternative and Complementary Medicine, vol. 7, no. 1, pp. 83–91, 2001. View at Scopus
  107. A. Russo, J. Jiang, and M. Barrett, Trends in Potentially Preventable Hospitalizations among Adults and Children, Healthcare Cost and Utilization Project (HCUP) Statistical Briefs, Agency for Health Care Policy and Research (US), 2006.
  108. N. N. K. Anderson, S. Breckler, D. Ballard, et al., “Stress in America,” APA report, 2009.
  109. Lancet-Editorial, “China's major health challenge: control of chronic diseases,” The Lancet, vol. 378, no. 9790, article 457, 2011.
  110. S. Reardon, “A world of chronic disease,” Science, vol. 333, no. 6042, pp. 558–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. O. S. Jesner, M. Aref-Adib, and E. Coren, “Risperidone for autism spectrum disorder,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD005040, 2007. View at Scopus
  112. C. U. Correll, C. J. Kratochvil, and J. S. March, “Developments in pediatric psychopharmacology: focus on stimulants, antidepressants, and antipsychotics,” Journal of Clinical Psychiatry, vol. 72, no. 5, pp. 655–670, 2011. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Moroz, “The effects of psychological trauma on children and adolescents,” Report, Department of Health, 2005.
  114. M. J. Essex, W. Thomas Boyce, C. Hertzman, et al., “Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence,” Child Development. In press. View at Publisher · View at Google Scholar
  115. J. P. Shonkoff, “Protecting brains, not simply stimulating minds,” Science, vol. 333, no. 6045, pp. 982–983, 2011.
  116. J. H. Austin, Zen and the Brain: Toward an Understanding of Meditation and Consciousness, MIT Press, Cambridge, Mass, USA, 1998.
  117. A. Lutz, H. A. Slagter, J. D. Dunne, and R. J. Davidson, “Attention regulation and monitoring in meditation,” Trends in Cognitive Sciences, vol. 12, no. 4, pp. 163–169, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. Z. Josipovic, “Duality and nonduality in meditation research,” Consciousness and Cognition, vol. 19, no. 4, pp. 1119–1121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. Y. Kubota, W. Sato, M. Toichi et al., “Frontal midline theta rhythm is correlated with cardiac autonomic activities during the performance of an attention demanding meditation procedure,” Cognitive Brain Research, vol. 11, no. 2, pp. 281–287, 2001. View at Publisher · View at Google Scholar · View at Scopus
  120. B. R. Cahn, A. Delorme, and J. Polich, “Occipital gamma activation during Vipassana meditation,” Cognitive Processing, vol. 11, no. 1, pp. 39–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. C. E. Kerr, S. R. Jones, Q. Wan et al., “Effects of mindfulness meditation training on anticipatory α modulation in primary somatosensory cortex,” Brain Research Bulletin, vol. 85, no. 3-4, pp. 96–103, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Lutz, L. L. Greischar, N. B. Rawlings, M. Ricard, and R. J. Davidson, “Long-term meditators self-induce high-amplitude gamma synchrony during mental practice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 46, pp. 16369–16373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Travis, D. A. F. Haaga, J. Hagelin et al., “A self-referential default brain state: patterns of coherence, power, and eLORETA sources during eyes-closed rest and transcendental meditation practice,” Cognitive Processing, vol. 11, no. 1, pp. 21–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Levry, Kabbalah & Naam Yoga Self-Study Course, Rootlight, 2000.
  125. J. Levry, Effective Healing Techniques for this Age and Beyond, Rootlight I, 2010.
  126. S. Dane and N. Balci, “Handedness, eyedness and nasal cycle in children with autism,” International Journal of Developmental Neuroscience, vol. 25, no. 4, pp. 223–226, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. D. S. Shannahoff-Khalsa, “Selective unilateral autonomic activation: implications for psychiatry,” CNS Spectrums, vol. 12, no. 8, pp. 625–634, 2007. View at Scopus
  128. R. P. Brown and P. L. Gerbarg, “Yoga breathing, meditation, and longevity,” Annals of the New York Academy of Sciences, vol. 1172, pp. 54–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. G. van Wingen, C. Mattern, R. J. Verkes, J. Buitelaar, and G. Fernández, “Testosterone reduces amygdala-orbitofrontal cortex coupling,” Psychoneuroendocrinology, vol. 35, no. 1, pp. 105–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. D. W. Pfaff, I. Rapin, and S. Goldman, “Male predominance in autism: neuroendocrine influences on arousal and social anxiety,” Autism Research, vol. 4, no. 3, pp. 163–176, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. A. J. Guastella, S. L. Einfeld, K. M. Gray et al., “Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders,” Biological Psychiatry, vol. 67, no. 7, pp. 692–694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  132. F. Travis, D. A. F. Haaga, J. Hagelin et al., “Effects of transcendental meditation practice on brain functioning and stress reactivity in college students,” International Journal of Psychophysiology, vol. 71, no. 2, pp. 170–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. S. W. Lazar, C. E. Kerr, R. H. Wasserman et al., “Meditation experience is associated with increased cortical thickness,” NeuroReport, vol. 16, no. 17, pp. 1893–1897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  134. B. K. Holzel, J. Carmody, M. Vangel et al., “Mindfulness practice leads to increases in regional brain gray matter density,” Psychiatry Research, vol. 191, no. 1, pp. 36–43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. C. R. K. MacLean, K. G. Walton, S. R. Wenneberg et al., “Effects of the transcendental meditation program on adaptive mechanisms: changes in hormone levels and responses to stress after 4 months of practice,” Psychoneuroendocrinology, vol. 22, no. 4, pp. 277–295, 1997. View at Publisher · View at Google Scholar · View at Scopus
  136. T. W. Kjaer, C. Bertelsen, P. Piccini, D. Brooks, J. Alving, and H. C. Lou, “Increased dopamine tone during meditation-induced change of consciousness,” Cognitive Brain Research, vol. 13, no. 2, pp. 255–259, 2002. View at Publisher · View at Google Scholar · View at Scopus
  137. S. E. Johnstone and S. B. Baylin, “Stress and the epigenetic landscape: a link to the pathobiology of human diseases?” Nature Reviews Genetics, vol. 11, no. 11, pp. 806–812, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. G. L. Xiong and P. M. Doraiswamy, “Does meditation enhance cognition and brain plasticity?” Annals of the New York Academy of Sciences, vol. 1172, pp. 63–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. U. Will and E. Berg, “Brain wave synchronization and entrainment to periodic acoustic stimuli,” Neuroscience Letters, vol. 424, no. 1, pp. 55–60, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. K. J. Jeffries, J. B. Fritz, and A. R. Braun, “Words in melody: an H215O PET study of brain activation during singing and speaking,” NeuroReport, vol. 14, no. 5, pp. 749–754, 2003. View at Publisher · View at Google Scholar · View at Scopus
  141. D. E. Callan, V. Tsytsarev, T. Hanakawa et al., “Song and speech: brain regions involved with perception and covert production,” NeuroImage, vol. 31, no. 3, pp. 1327–1342, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. D. Schon, R. Gordon, A. Campagne et al., “Similar cerebral networks in language, music and song perception,” NeuroImage, vol. 51, no. 1, pp. 450–461, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. L. Bernardi, P. Sleight, G. Bandinelli et al., “Effect of rosary prayer and yoga mantras on autonomic cardiovascular rhythms: comparative study,” British Medical Journal, vol. 323, no. 7327, pp. 1446–1449, 2001. View at Scopus
  144. D. S. Khalsa, D. Amen, C. Hanks, N. Money, and A. Newberg, “Cerebral blood flow changes during chanting meditation,” Nuclear Medicine Communications, vol. 30, no. 12, pp. 956–961, 2009. View at Publisher · View at Google Scholar · View at Scopus