About this Journal Submit a Manuscript Table of Contents
Advances in Virology
Volume 2011 (2011), Article ID 734690, 7 pages
http://dx.doi.org/10.1155/2011/734690
Research Article

The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus

Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong

Received 25 November 2010; Revised 31 July 2011; Accepted 31 July 2011

Academic Editor: Alain Kohl

Copyright © 2011 K. H. Chan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. M. Peiris, S. T. Lai, L. L. M. Poon et al., “Coronavirus as a possible cause of severe acute respiratory syndrome,” The Lancet, vol. 361, no. 9366, pp. 1319–1325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. T. G. Ksiazek, D. Erdman, C. S. Goldsmith et al., “A novel coronavirus associated with severe acute respiratory syndrome,” New England Journal of Medicine, vol. 348, no. 20, pp. 1953–1966, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. Drosten, S. Günther, W. Preiser et al., “Identification of a novel coronavirus in patients with severe acute respiratory syndrome,” New England Journal of Medicine, vol. 348, no. 20, pp. 1967–1976, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. C. A. Donnelly, A. C. Ghani, G. M. Leung et al., “Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong,” The Lancet, vol. 361, no. 9371, pp. 1761–1766, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. T. F. Booth, B. Kournikakis, N. Bastien et al., “Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units,” Journal of Infectious Diseases, vol. 191, no. 9, pp. 1472–1477, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. Department of Health, “Outbreak of sever acute respiratory syndrome (SARS) at Amoy Gardens, Kowloon Bay, Hong Kong main findings of the investigation,” 2003.
  7. J. S. M. Peiris, C. M. Chu, V. C. C. Cheng et al., “Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study,” The Lancet, vol. 361, no. 9371, pp. 1767–1772, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. I. T. S. Yu, Y. Li, T. W. Wong et al., “Evidence of airborne transmission of the severe acute respiratory syndrome virus,” New England Journal of Medicine, vol. 350, no. 17, pp. 1731–1739, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. WHO Report, “First data on stability and resistance of SARS coronavirus compiled by members of WHO laboratory network,” http://www.who.int/csr/sars/survival_2003_05_04/en/#.
  10. M. Y. Lai, P. K. Cheng, and W. W. Lim, “Survival of severe acute respiratory syndrome coronavirus,” Clinical Infectious Diseases, vol. 41, no. 7, pp. e67–e71, 2005.
  11. M. E. R. Darnell, K. Subbarao, S. M. Feinstone, and D. R. Taylor, “Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV,” Journal of Virological Methods, vol. 121, no. 1, pp. 85–91, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. M. K. Ijaz, A. H. Brunner, and S. A. Sattar, “Survival characteristics of airborne human coronavirus 229E,” Journal of General Virology, vol. 66, no. 12, pp. 2743–2748, 1985. View at Scopus
  13. J. Sizun, M. W. N. Yu, and P. J. Talbot, “Survival of human coronaviruses 229E and OC43 in suspension and after drying on surfaces: a possible source of hospital-acquired infections,” Journal of Hospital Infection, vol. 46, no. 1, pp. 55–60, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. H. F. Rabenau, J. Cinatl, B. Morgenstern, G. Bauer, W. Preiser, and H. W. Doerr, “Stability and inactivation of SARS coronavirus,” Medical Microbiology and Immunology, vol. 194, no. 1-2, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. Tan, L. Mu, J. Huang, S. Yu, B. Chen, and J. Yin, “An initial investigation of the association between the SARS outbreak and weather: with the view of the environmental temperature and its variation,” Journal of Epidemiology and Community Health, vol. 59, no. 3, pp. 186–192, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. Yuan, H. Yun, W. Lan et al., “A climatologic investigation of the SARS-CoV outbreak in Beijing, China,” American Journal of Infection Control, vol. 34, no. 4, pp. 234–236, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. Q. C. Cai, J. Lu, Q. F. Xu et al., “Influence of meteorological factors and air pollution on the outbreak of severe acute respiratory syndrome,” Public Health, vol. 121, no. 4, pp. 258–265, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. L. M. Casanova, S. Jeon, W. A. Rutala, D. J. Weber, and M. D. Sobsey, “Effects of air temperature and relative humidity on coronavirus survival on surfaces,” Applied and Environmental Microbiology, vol. 76, no. 9, pp. 2712–2717, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. L. J. Reed and H. Muench, “A simple method of estimating fifty per cent endpoints,” American Journal of Epidemiology, vol. 27, no. 3, pp. 493–497, 1938. View at Scopus
  20. C. B. Hall, R. G. Douglas, and J. M. Geiman, “Possible transmission by fomites of respiratory syncytial virus,” Journal of Infectious Diseases, vol. 141, no. 1, pp. 98–102, 1980. View at Scopus
  21. E. C. Pirtle and G. W. Beran, “Virus survival in the environment,” OIE Revue Scientifique et Technique, vol. 10, no. 3, pp. 733–748, 1991. View at Scopus
  22. M. T. Brady, J. Evans, and J. Cuartas, “Survival and disinfection of parainfluenza viruses on environmental surfaces,” American Journal of Infection Control, vol. 18, no. 1, pp. 18–23, 1990. View at Scopus
  23. W. H. Seto, D. Tsang, R. W. H. Yung et al., “Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome (SARS),” The Lancet, vol. 361, no. 9368, pp. 1519–1520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Lin, D. Y. K. Fong, B. Zhu, and J. Karlberg, “Environmental factors on the SARS epidemic: air temperature, passage of time and multiplicative effect of hospital infection,” Epidemiology and Infection, vol. 134, no. 2, pp. 223–230, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. V. S. F. Chan, K. Y. K. Chan, Y. Chen et al., “Homozygous L-SIGN (CLEC4M) plays a protective role in SARS coronavirus infection,” Nature Genetics, vol. 38, no. 1, pp. 38–46, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus