About this Journal Submit a Manuscript Table of Contents
Advances in Virology
Volume 2011 (2011), Article ID 940210, 10 pages
http://dx.doi.org/10.1155/2011/940210
Review Article

Endogenous Murine Leukemia Viruses: Relationship to XMRV and Related Sequences Detected in Human DNA Samples

Department of Molecular Biology and Microbiology and Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA

Received 15 June 2011; Accepted 7 July 2011

Academic Editor: Arifa S. Khan

Copyright © 2011 Oya Cingöz and John M. Coffin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Coffin, S. H. Hughes, and H. Varmus, Retroviruses, Cold Spring Harbor Laboratory Press, Plainview, NY, USA, 1997.
  2. E. Herniou, J. Martin, K. Miller, J. Cook, M. Wilkinson, and M. Tristem, “Retroviral diversity and distribution in vertebrates,” Journal of Virology, vol. 72, no. 7, pp. 5955–5966, 1998. View at Scopus
  3. K. Tomonaga and J. M. Coffin, “Structures of endogenous nonecotropic murine leukemia virus (MLV) long terminal repeats in wild mice: implication for evolution of MLVs,” Journal of Virology, vol. 73, no. 5, pp. 4327–4340, 1999. View at Scopus
  4. C. Stocking and C. A. Kozak, “Endogenous retroviruses: murine endogenous retroviruses,” Cellular and Molecular Life Sciences, vol. 65, no. 21, pp. 3383–3398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. P. Stoye and J. M. Coffin, “The four classes of endogenous murine leukemia virus: structural relationships and potential for recombination,” Journal of Virology, vol. 61, no. 9, pp. 2659–2669, 1987. View at Scopus
  6. L. M. Albritton, L. Tseng, D. Scadden, and J. M. Cunningham, “A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection,” Cell, vol. 57, no. 4, pp. 659–666, 1989. View at Scopus
  7. C. A. Kozak, “The mouse “xenotropic” gammaretroviruses and their XPR1 receptor,” Retrovirology, vol. 7, no. 1, article 101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. K. S. Sfanos, A. L. Aloia, J. L. Hicks, et al., “Identification of replication competent murine gammaretroviruses in commonly used prostate cancer cell lines,” PLoS ONE, vol. 6, no. 6, article e20874, 2011.
  9. J. W. Hartley, N. K. Wolford, L. J. Old, and W. P. Rowe, “A new class of murine leukemia virus associated with development of spontaneous lymphomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 2, pp. 789–792, 1977. View at Scopus
  10. P. Jern, J. P. Stoye, and J. M. Coffin, “Role of APOBEC3 in genetic diversity among endogenous murine leukemia viruses,” PLoS Genetics, vol. 3, no. 10, article e183, pp. 2014–2022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Neil and P. Bieniasz, “Human immunodeficiency virus, restriction factors, and interferon,” Journal of Interferon and Cytokine Research, vol. 29, no. 9, pp. 569–580, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Urisman, R. J. Molinaro, N. Fischer et al., “Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant,” PLoS Pathogens, vol. 2, no. 3, article e25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. V. C. Lombardi, F. W. Ruscetti, J. D. Gupta et al., “Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome,” Science, vol. 326, no. 5952, pp. 585–589, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Lo, N. Pripuzova, B. Li et al., “Detection of MLV-related virus gene sequences in blood of patients with chronic fatigue syndrome and healthy blood donors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 36, pp. 15874–15879, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. C. Knouf, M. J. Metzger, P. S. Mitchell et al., “Multiple integrated copies and high-level production of the human retrovirus XMRV (Xenotropic Murine leukemia virus-Related Virus) from 22Rv1 prostate carcinoma cells,” Journal of Virology, vol. 83, no. 14, pp. 7353–7356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Cornelissen, F. Zorgdrager, P. Blom et al., “Lack of detection of XMRV in seminal plasma from HIV-1 infected men in The Netherlands,” PLoS ONE, vol. 5, no. 8, article e12040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. J. Rodriguez and S. P. Goff, “Xenotropic murine leukemia virus-related virus establishes an efficient spreading infection and exhibits enhanced transcriptional activity in prostate carcinoma cells,” Journal of Virology, vol. 84, no. 5, pp. 2556–2562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Sramkoski, T. G. Pretlow, J. M. Giaconia et al., “A new human prostate carcinoma cell line, 22Rv1,” In Vitro Cellular and Developmental Biology—Animal, vol. 35, no. 7, pp. 403–409, 1999. View at Scopus
  19. T. Paprotka, K. A. Delviks-Frankenberry, O. Cingöz, et al., “Recombinant origin of the retrovirus XMRV,” Science, vol. 333, no. 6038, pp. 97–101, 2011.
  20. J. Zhuang, S. Mukherjee, Y. Ron, and J. P. Dougherty, “High rate of genetic recombination in murine leukemia virus: implications for influencing proviral ploidy,” Journal of Virology, vol. 80, no. 13, pp. 6706–6711, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. T. S. Tralka, C. L. Yee, A. B. Rabson, et al., “Murine type C retroviruses and intracisternal A-particles in human tumors serially passaged in nude mice,” Journal of the National Cancer Institute, vol. 71, no. 3, pp. 591–599, 1983.
  22. J. A. Levy and T. Pincus, “Demonstration of biological activity of a murine leukemia virus of New Zealand black mice,” Science, vol. 170, no. 3955, pp. 326–327, 1970. View at Scopus
  23. B. G. Achong, P. A. Trumper, and B. C. Giovanella, “C type virus particles in human tumours transplanted into nude mice,” British Journal of Cancer, vol. 34, no. 2, pp. 203–206, 1976. View at Scopus
  24. H. Wunderli, D. D. Mickey, and D. F. Paulson, “C-type virus particles in human urogenital tumours after heterotransplantation into nude mice,” British Journal of Cancer, vol. 39, no. 1, pp. 35–42, 1979. View at Scopus
  25. R. Mendoza, A. E. Vaughan, and A. D. Miller, “The left half of the XMRV retrovirus is present in an endogenous retrovirus of NIH/3T3 swiss mouse cells,” Journal of Virology, vol. 85, no. 17, pp. 9247–9248, 2011. View at Publisher · View at Google Scholar
  26. T. Paprotka, N. J. Venkatachari, C. Chaipan et al., “Inhibition of xenotropic murine leukemia virus-related virus by APOBEC3 proteins and antiviral drugs,” Journal of Virology, vol. 84, no. 11, pp. 5719–5729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Oakes, A. K. Tai, O. Cingöz et al., “Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences,” Retrovirology, vol. 7, no. 1, p. 109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. M. J. Robinson, O. W. Erlwein, S. Kaye et al., “Mouse DNA contamination in human tissue tested for XMRV,” Retrovirology, vol. 7, no. 1, p. 108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Qin, Z. Wang, J. Shang et al., “Intracisternal a particle genes: distribution in the mouse genome, active subtypes, and potential roles as species-specific mediators of susceptibility to cancer,” Molecular Carcinogenesis, vol. 49, no. 1, pp. 54–67, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Knox, D. Carrigan, G. Simmons, et al., “No evidence of murine-like gammaretroviruses in CFS patients previously identified as XMRV-infected,” Science, vol. 333, no. 6038, pp. 94–97, 2011.
  31. E. Sato, R. A. Furuta, and T. Miyazawa, “An endogenous murine leukemia viral genome contaminant in a commercial RT-PCR Kit is amplified using standard primers for XMRV,” Retrovirology, vol. 7, no. 1, p. 110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. W. Tuke, K. I. Tettmar, A. Tamuri, J. P. Stoye, and R. S. Tedder, “PCR master mixes harbour murine DNA sequences. Caveat emptor!,” PLoS ONE, vol. 6, no. 5, article e19953, 2011.
  33. C. H. Shin, L. Bateman, R. Schlaberg, et al., “Absence of XMRV retrovirus and other murine leukemia virus-related viruses in patients with chronic fatigue syndrome,” The Journal of Virology, vol. 85, no. 14, pp. 7195–7202, 2011.
  34. J. P. Stoye, R. H. Silverman, C. A. Boucher, and S. F. J. Le Grice, “The xenotropic murine leukemia virus-related retrovirus debate continues at first international workshop,” Retrovirology, vol. 7, no. 1, p. 113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Y. Thomas, R. Khiroya, R. S. Schwartz, and J. M. Coffin, “Role of recombinant ecotropic and polytropic viruses in the development of spontaneous thymic lymphomas in HRS/J mice,” Journal of Virology, vol. 50, no. 2, pp. 397–407, 1984. View at Scopus
  36. J. P. Stoye, C. Moroni, and J. M. Coffin, “Virological events leading to spontaneous AKR thymomas,” Journal of Virology, vol. 65, no. 3, pp. 1273–1285, 1991. View at Scopus
  37. A. S. Khan, “Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses,” Journal of Virology, vol. 50, no. 3, pp. 864–871, 1984. View at Scopus
  38. S. Bhosle, S. Suppiah, R. Molinaro et al., “Evaluation of cellular determinants required for in vitro xenotropic murine leukemia virus-related virus entry into human prostate cancer and noncancerous cells,” Journal of Virology, vol. 84, no. 13, pp. 6288–6296, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. A. Weiss, “A cautionary tale of virus and disease,” BMC Biology, vol. 8, no. 1, p. 124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Hue, E. R. Gray, A. Gall et al., “Disease-associated XMRV sequences are consistent with laboratory contamination,” Retrovirology, vol. 7, no. 1, p. 111, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Takeuchi, M. O. McClure, and M. Pizzato, “Identification of gammaretroviruses constitutively released from cell lines used for human immunodeficiency virus research,” Journal of Virology, vol. 82, no. 24, pp. 12585–12588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. P. Raisch, M. Pizzato, H. Y. Sun, Y. Takeuchi, L. W. Cashdollar, and S. E. Grossberg, “Molecular cloning, complete sequence, and biological characterization of a xenotropic murine leukemia virus constitutively released from the human B-lymphoblastoid cell line DG-75,” Virology, vol. 308, no. 1, pp. 83–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Pizzato, “MLV glycosylated-gag is an infectivity factor that rescues Nef-deficient HIV-1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 20, pp. 9364–9369, 2010. View at Publisher · View at Google Scholar · View at Scopus