About this Journal Submit a Manuscript Table of Contents
Advances in Virology
Volume 2011 (2011), Article ID 965689, 5 pages
http://dx.doi.org/10.1155/2011/965689
Research Article

Sexual Transmission of XMRV: A Potential Infection Route

1Division of Pathology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
2Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30329, USA
3Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Bangkok 10700, Thailand
4Abbott Diagnostics, Emerging Pathogens and Virus Discovery, Abbott Park, IL 60064, USA
5Glickman Urological and Kidney Institute and LRI, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
6Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA

Received 27 April 2011; Accepted 25 May 2011

Academic Editor: Arifa S. Khan

Copyright © 2011 Prachi Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Urisman, R. J. Molinaro, N. Fischer et al., “Identification of a novel gammaretrovirus in prostate tumors of patients homozygous for R462Q RNASEL variant,” PLoS Pathogens, vol. 2, no. 3, article e25, 2006. View at Publisher · View at Google Scholar · View at PubMed
  2. V. C. Lombardi, F. W. Ruscetti, J. D. Gupta et al., “Detection of an infectious retrovirus, XMRV, in blood cells of patients with chronic fatigue syndrome,” Science, vol. 326, no. 5952, pp. 585–589, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. P. Stoye, R. H. Silverman, C. A. Boucher, and S. F. Le Grice, “The xenotropic murine leukemia virus-related retrovirus debate continues at first international workshop,” Retrovirology, vol. 7, p. 113, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. S. Hue, E. R. Gray, A. Gall et al., “Disease-associated XMRV sequences are consistent with laboratory contamination,” Retrovirology, vol. 7, no. 1, p. 111, 2010. View at Publisher · View at Google Scholar · View at PubMed
  5. B. Oakes, A. K. Tai, O. Cingoz et al., “Contamination of human DNA samples with mouse DNA can lead to false detection of XMRV-like sequences,” Retrovirology, vol. 7, no. 1, p. 109, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. M. J. Robinson, O. W. Erlwein, S. Kaye et al., “Mouse DNA contamination in human tissue tested for XMRV,” Retrovirology, vol. 7, no. 1, p. 108, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. E. Sato, R. A. Furuta, and T. Miyazawa, “An endogenous murine leukemia viral genome contaminant in a commercial RT-PCR Kit is amplified using standard primers for XMRV,” Retrovirology, vol. 7, no. 1, p. 110, 2010. View at Publisher · View at Google Scholar · View at PubMed
  8. C. H. Shin, L. Bateman, R. Schlaberg, et al., “Absence of XMRV and other murine leukemia virus-related viruses in patients with chronic fatigue syndrome,” The Journal of Virology, vol. 85, pp. 7195–7202, 2011. View at Publisher · View at Google Scholar · View at PubMed
  9. K. Stieler, C. Schulz, M. Lavanya, M. Aepfelbacher, C. Stocking, and N. Fischer, “Host range and cellular tropism of the human exogenous gammaretrovirus XMRV,” Virology, vol. 399, no. 1, pp. 23–30, 2010. View at Publisher · View at Google Scholar · View at PubMed
  10. R. E. Tarlinton, J. Meers, and P. R. Young, “Retroviral invasion of the koala genome,” Nature, vol. 442, no. 7098, pp. 79–81, 2006. View at Publisher · View at Google Scholar · View at PubMed
  11. N. Fischer, C. Schulz, K. Stieler et al., “Xenotropic murine leukemia virus-related gammaretro virus in respiratory tract,” Emerging Infectious Diseases, vol. 16, no. 6, pp. 1000–1002, 2010. View at Publisher · View at Google Scholar
  12. S. Hong, E. A. Klein, J. Das Gupta et al., “Fibrils of prostatic acid phosphatase fragments boost infections with XMRV (xenotropic murine leukemia virus-related virus), a human retrovirus associated with prostate cancer,” The Journal of Virology, vol. 83, no. 14, pp. 6995–7003, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. N. Onlamoon, J. D. Gupta, P. Sharma et al., “Infection, viral dissemination and antibody responses of rhesus macaques exposed to the human gammaretrovirus XMRV,” The Journal of Virology, vol. 85, no. 9, pp. 4547–4557, 2011. View at Publisher · View at Google Scholar · View at PubMed
  14. J. Münch, E. Rücker, L. Ständker et al., “Semen-derived amyloid fibrils drastically enhance HIV infection,” Cell, vol. 131, no. 6, pp. 1059–1071, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. N. R. Roan, J. Münch, N. Arhel et al., “The cationic properties of SEVI underlie its ability to enhance human immunodeficiency virus infection,” The Journal of Virology, vol. 83, no. 1, pp. 73–80, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus