About this Journal Submit a Manuscript Table of Contents
Advances in Virology
Volume 2012 (2012), Article ID 123605, 28 pages
http://dx.doi.org/10.1155/2012/123605
Review Article

Impact of Tat Genetic Variation on HIV-1 Disease

1Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, MS no. 1013A, Philadelphia, PA 19102, USA
2Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, MS no. 1013A, Philadelphia, PA 19102, USA

Received 22 February 2012; Accepted 14 May 2012

Academic Editor: Nicola Coppola

Copyright © 2012 Luna Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Garcia, D. Harrich, E. Soultanakis, F. Wu, R. Mitsuyasu, and R. B. Gaynor, “Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation,” EMBO Journal, vol. 8, no. 3, pp. 765–778, 1989. View at Scopus
  2. T. M. Rana and K. T. Jeang, “Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA,” Archives of Biochemistry and Biophysics, vol. 365, no. 2, pp. 175–185, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. B. N. Fields, D. M. Knipe, and P. M. Howley, Fields' Virology, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2007.
  4. K. T. Jeang, H. Xiao, and E. A. Rich, “Multifaceted activities of the HIV-1 transactivator of transcription, tat,” Journal of Biological Chemistry, vol. 274, no. 41, pp. 28837–28840, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Barre-Sinoussi, J. C. Chermann, and F. Rey, “Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS),” Science, vol. 220, no. 4599, pp. 868–871, 1983. View at Scopus
  6. C. A. Rosen, J. G. Sodroski, and W. C. Goh, “Post-transcriptional regulation accounts for the trans-activation of the human T-lymphotropic virus type III,” Nature, vol. 319, no. 6054, pp. 555–559, 1986. View at Scopus
  7. M. Strazza, V. Pirrone, B. Wigdahl, and M. R. Nonnemacher, “Breaking down the barrier: the effects of HIV-1 on the blood-brain barrier,” Brain Research, vol. 1399, pp. 96–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. R. López-Huertas, S. Callejas, D. Abia et al., “Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon,” Nucleic Acids Research, vol. 38, no. 10, pp. 3287–3307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kuppuswamy, T. Subramanian, A. Srinivasan, and G. Chinnadurai, “Multiple functional domains of tat, the trans-activator of HIV-1, defined by mutational analysis,” Nucleic Acids Research, vol. 17, no. 9, pp. 3551–3561, 1989. View at Scopus
  10. P. Kalantari, V. Narayan, S. K. Natarajan et al., “Thioredoxin reductase-1 negatively regulates HIV-1 transactivating protein Tat-dependent transcription in human macrophages,” Journal of Biological Chemistry, vol. 283, no. 48, pp. 33183–33190, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Dingwall, I. Ernberg, M. J. Gait et al., “Human immunodeficiency virus 1 Tat protein binds trans-activation-responsive region (TAR) RNA in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 18, pp. 6925–6929, 1989. View at Scopus
  12. S. Roy, U. Delling, C. H. Chen, C. A. Rosen, and N. Sonenberg, “A bulge structure in HIV-1 TAR RNA is required for Tat binding and Tat-mediated trans-activation,” Genes and Development, vol. 4, no. 8, pp. 1365–1373, 1990. View at Scopus
  13. K. M. Weeks and D. M. Crothers, “RNA recognition by Tat-derived peptides: interaction in the major groove?” Cell, vol. 66, no. 3, pp. 577–588, 1991. View at Scopus
  14. S. Ruben, A. Perkins, R. Purcell et al., “Structural and functional characterization of human immunodeficiency virus Tat protein,” Journal of Virology, vol. 63, no. 1, pp. 1–8, 1989. View at Scopus
  15. J. Hauber, M. H. Malim, and B. R. Cullen, “Mutational analysis of the conserved basic domain of human immunodeficiency virus Tat protein,” Journal of Virology, vol. 63, no. 3, pp. 1181–1187, 1989. View at Scopus
  16. S. R. Schwarze, K. A. Hruska, and S. F. Dowdy, “Protein transduction: unrestricted delivery into all cells?” Trends in Cell Biology, vol. 10, no. 7, pp. 290–295, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. R. Schwarze and S. F. Dowdy, “In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA,” Trends in Pharmacological Sciences, vol. 21, no. 2, pp. 45–48, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Smith, S. Pentlicky, Z. Klase et al., “An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection,” Journal of Biological Chemistry, vol. 278, no. 45, pp. 44816–44825, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Fiorelli, G. Barillari, E. Toschi et al., “IFN-γ induces endothelial cells to proliferate and to invade the extracellular matrix in response to the HIV-1 Tat protein: implications for AIDS-Kaposi's sarcoma pathogenesis,” Journal of Immunology, vol. 162, no. 2, pp. 1165–1170, 1999. View at Scopus
  20. G. Barillari, C. Sgadari, V. Fiorelli et al., “The Tat protein of human immunodeficiency virus type-1 promotes vascular cell growth and locomotion by engaging the α5β1 and αvβ3 integrins and by mobilizing sequestered basic fibroblast growth factor,” Blood, vol. 94, no. 2, pp. 663–672, 1999. View at Scopus
  21. C. Neuveut, R. M. Scoggins, D. Camerini, R. B. Markham, and K. T. Jeang, “Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1,” Journal of Biomedical Science, vol. 10, no. 6, part 1, pp. 651–660, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. U. Mahlknecht, I. Dichamp, A. Varin, C. van Lint, and G. Herbein, “NF-κB-dependent control of HIV-1 transcription by the second coding exon of Tat in T cells,” Journal of Leukocyte Biology, vol. 83, no. 3, pp. 718–727, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. H. Chao, K. Fujinaga, J. E. Marion et al., “Flavopiridol inhibits P-TEFb and blocks HIV-1 replication,” Journal of Biological Chemistry, vol. 275, no. 37, pp. 28345–28348, 2000. View at Scopus
  24. H. S. Y. Mancebo, G. Lee, J. Flygare et al., “P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro,” Genes and Development, vol. 11, no. 20, pp. 2633–2644, 1997. View at Scopus
  25. C. Benson, J. White, J. de Bono et al., “A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days,” British Journal of Cancer, vol. 96, no. 1, pp. 29–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Arzumanov, A. P. Walsh, V. K. Rajwanshi, R. Kumar, J. Wengel, and M. J. Gait, “Inhibition of HIV-1 Tat-dependent trans activation by steric block chimeric 2'-O-methyl/LNA oligoribonucleotides,” Biochemistry, vol. 40, no. 48, pp. 14645–14654, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Vickers, B. F. Baker, P. D. Cook et al., “Inhibition of HIV-LTR gene expression by oligonucleotides targeted to the TAR element,” Nucleic Acids Research, vol. 19, no. 12, pp. 3359–3368, 1991. View at Scopus
  28. N. Kaushik, A. Basu, and V. N. Pandey, “Inhibition of HIV-1 replication by anti-trans-activation responsive polyamide nucleotide analog,” Antiviral Research, vol. 56, no. 1, pp. 13–27, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. K. E. Lind, Z. Du, K. Fujinaga, B. M. Peterlin, and T. L. James, “Structure-based computational database screening, in vitro assay, and NMR assessment of compounds that target TAR RNA,” Chemistry and Biology, vol. 9, no. 2, pp. 185–193, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Shoji, K. Furuishi, A. Ogata et al., “An allosteric drug, o,o'-bismyristoyl thiamine disulfide, suppresses HIV-1 replication through prevention of nuclear translocation of both HIV-1 Tat and NF-κB,” Biochemical and Biophysical Research Communications, vol. 249, no. 3, pp. 745–753, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Friedler, D. Friedler, N. W. Luedtke, Y. Tor, A. Loyter, and C. Gilon, “Development of a functional backbone cyclic mimetic of the HIV-1 Tat arginine-rich motif,” Journal of Biological Chemistry, vol. 275, no. 31, pp. 23783–23789, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Choudhury, J. Wang, A. B. Rabson et al., “Inhibition of HIV-1 replication by a Tat RNA-binding domain peptide analog,” Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, vol. 17, no. 2, pp. 104–111, 1998. View at Scopus
  33. F. Hamy, E. R. Felder, G. Heizmann et al., “An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3548–3553, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Hamy, V. Brondani, A. Flörsheimer, W. Stark, M. J. J. Blommers, and T. Klimkait, “A new class of HIV-1 Tat antagonist acting through Tat-TAR inhibition,” Biochemistry, vol. 37, no. 15, pp. 5086–5095, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Gelus, C. Bailly, F. Hamy, T. Klimkait, W. D. Wilson, and D. W. Boykin, “Inhibition of HIV-1 Tat-TAR interaction by diphenylfuran derivatives: effects of the terminal basic side chains,” Bioorganic and Medicinal Chemistry, vol. 7, no. 6, pp. 1089–1096, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Pearson, J. Garcia, F. Wu, N. Modesti, J. Nelson, and R. Gaynor, “A transdominant Tat mutant that inhibits Tat-induced gene expression from the human immunodeficiency virus long terminal repeat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 13, pp. 5079–5083, 1990. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Litovchick, A. Lapidot, M. Eisenstein, A. Kalinkovich, and G. Borkow, “Neomycin B-arginine conjugate, a novel HIV-1 Tat antagonist: synthesis and anti-HIV activities,” Biochemistry, vol. 40, no. 51, pp. 15612–15623, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Chandra, I. Demirhan, S. K. Arya, and P. Chandra, “D-penicillamine inhibits transactivation of human immunodeficiency virus type-1 (HIV-1) LTR by transactivator protein,” FEBS Letters, vol. 236, no. 2, pp. 282–286, 1988. View at Scopus
  39. F. Hamy, N. Gelus, M. Zeller, J. L. Lazdins, C. Bailly, and T. Klimkait, “Blocking HIV replication by targeting Tat protein,” Chemistry and Biology, vol. 7, no. 9, pp. 669–676, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Rusnati, G. Tulipano, D. Spillmann et al., “Multiple interactions of HIV-I Tat protein with size-defined heparin oligosaccharides,” Journal of Biological Chemistry, vol. 274, no. 40, pp. 28198–28205, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. M. C. Hsu, U. Dhingra, J. V. Earley et al., “Inhibition of type 1 human immunodeficiency virus replication by a Tat antagonist to which the virus remains sensitive after prolonged exposure in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 14, pp. 6395–6399, 1993. View at Scopus
  42. M. C. Hsu, A. D. Schutt, M. Holly et al., “Inhibition of HIV replication in acute and chronic infections in vitro by a Tat antagonist,” Science, vol. 254, no. 5039, pp. 1799–1802, 1991. View at Scopus
  43. S. T. Butera, B. D. Roberts, J. W. Critchfield et al., “Compounds that target novel cellular components involved in HIV-1 transcription,” Molecular Medicine, vol. 1, no. 7, pp. 758–767, 1995. View at Scopus
  44. J. A. Turpin, R. W. Buckheit, D. Derse et al., “Inhibition of acute-, latent-, and chronic-phase human immunodeficiency virus type 1 (HIV-1) replication by a bistriazoloacridone analog that selectively inhibits HIV-1 transcription,” Antimicrobial Agents and Chemotherapy, vol. 42, no. 3, pp. 487–494, 1998. View at Scopus
  45. M. Baba, M. Okamoto, M. Makino et al., “Potent and selective inhibition of human immunodeficiency virus type 1 transcription by piperazinyloxoquinoline derivatives,” Antimicrobial Agents and Chemotherapy, vol. 41, no. 6, pp. 1250–1255, 1997. View at Scopus
  46. M. Baba, M. Okamoto, M. Kawamura et al., “Inhibition of human immunodeficiency virus type 1 replication and cytokine production by fluoroquinoline derivatives,” Molecular Pharmacology, vol. 53, no. 6, pp. 1097–1103, 1998. View at Scopus
  47. L. A. Pereira, K. Bentley, A. Peeters, M. J. Churchill, and N. J. Deacon, “A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter,” Nucleic Acids Research, vol. 28, no. 3, pp. 663–668, 2000. View at Scopus
  48. C. M. Chiang, H. Ge, Z. Wang, A. Hoffman, and G. Roeder, “Unique TATA-binding protein-containing complexes and cofactors involved in transcription by RNA polymerases II and III,” EMBO Journal, vol. 12, no. 7, pp. 2749–2762, 1993. View at Scopus
  49. J. R. Huh, J. M. Park, M. Kim, B. A. Carlson, D. L. Hatfield, and B. J. Lee, “Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro,” Biochemical and Biophysical Research Communications, vol. 256, no. 1, pp. 45–51, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. H. Ping and T. M. Rana, “DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation,” Journal of Biological Chemistry, vol. 276, no. 16, pp. 12951–12958, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. C. B. Phelps, L. L. Sengchanthalangsy, S. Malek, and G. Ghosh, “Mechanism of κB DNA binding by Rel/NF-κB dimers,” Journal of Biological Chemistry, vol. 275, no. 32, pp. 24392–24399, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Liu, M. R. Nonnemacher, and B. Wigdahl, “CCAAT/enhancer-binding proteins and the pathogenesis of retrovirus infection,” Future Microbiology, vol. 4, no. 3, pp. 299–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. H. L. Ross, S. Gartner, J. C. McArthur et al., “HIV-1 LTR C/EBP binding site sequence configurations preferenstially encountered in brain lead to enhanced C/EBP factor binding and increased LTR-specific activity,” Journal of NeuroVirology, vol. 7, no. 3, pp. 235–249, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Ranjbar, A. V. Tsytsykova, S. K. Lee et al., “NFAT5 regulates HIV-1 in primary monocytes via a highly conserved long terminal repeat site,” PLoS Pathogens, vol. 2, no. 12, article e130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. A. J. Henderson and K. L. Calame, “CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4+ T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 16, pp. 8714–8719, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. E. M. Kilareski, S. Shah, M. R. Nonnemacher, and B. Wigdahl, “Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage,” Retrovirology, vol. 6, article 118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. F. C. Krebs, M. M. Goodenow, and B. Wigdahl, “Neuroglial ATF/CREB factors interact with the human immunodeficiency virus type 1 long terminal repeat,” Journal of NeuroVirology, vol. 3, supplement 1, pp. S28–S32, 1997. View at Scopus
  58. S. Shah, M. R. Nonnemacher, V. Pirrone, and B. Wigdahl, “Innate and adaptive factors regulating human immunodeficiency virus type 1 genomic activation,” Journal of Neuroimmune Pharmacology, vol. 5, no. 3, pp. 278–293, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular Biology of the Cell, 2002.
  60. E. Verdin, P. Paras Jr., and C. van Lint, “Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation,” EMBO Journal, vol. 12, no. 8, pp. 3249–3259, 1993. View at Scopus
  61. E. Verdin, “DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1,” Journal of Virology, vol. 65, no. 12, pp. 6790–6799, 1991. View at Scopus
  62. K. A. Jones and B. M. Peterlin, “Control of RNA initiation and elongation at the HIV-1 promoter,” Annual Review of Biochemistry, vol. 63, pp. 717–743, 1994. View at Scopus
  63. C. van Lint, C. A. Amella, S. Emiliani, M. John, T. Jie, and E. Verdin, “Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity,” Journal of Virology, vol. 71, no. 8, pp. 6113–6127, 1997. View at Scopus
  64. A. Pumfery, L. Deng, A. Maddukuri et al., “Chromatin remodeling and modification during HIV-1 Tat-activated transcription,” Current HIV Research, vol. 1, no. 3, pp. 343–362, 2003. View at Scopus
  65. S. L. Berger, “Histone modifications in transcriptional regulation,” Current Opinion in Genetics and Development, vol. 12, no. 2, pp. 142–148, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. M. P. Cosma, “Ordered recruitment: gene-specific mechanism of transcription activation,” Molecular Cell, vol. 10, no. 2, pp. 227–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. S. A. Williams, L. F. Chen, H. Kwon, C. M. Ruiz-Jarabo, E. Verdin, and W. C. Greene, “NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation,” EMBO Journal, vol. 25, no. 1, pp. 139–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. J. J. Coull, F. Romerio, J. M. Sun et al., “The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1,” Journal of Virology, vol. 74, no. 15, pp. 6790–6799, 2000. View at Publisher · View at Google Scholar · View at Scopus
  69. W. Fischle, S. Emiliani, M. J. Hendzel et al., “A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p,” Journal of Biological Chemistry, vol. 274, no. 17, pp. 11713–11720, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. A. J. Bannister, P. Zegerman, J. F. Partridge et al., “Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain,” Nature, vol. 410, no. 6824, pp. 120–124, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Cheutin, A. J. McNairn, T. Jenuwein, D. M. Gilbert, P. B. Singh, and T. Misteli, “Maintenance of stable heterochromatin domains by dynamic HP1 binding,” Science, vol. 299, no. 5607, pp. 721–725, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. S. I. S. Grewal and D. Moazed, “Heterochromatin and epigenetic control of gene expression,” Science, vol. 301, no. 5634, pp. 798–802, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. T. Ishida, A. Hamano, T. Koiwa, and T. Watanabe, “5' long terminal repeat (LTR)-selective methylation of latently infected HIV-1 provirus that is demethylated by reactivation signals,” Retrovirology, vol. 3, article 69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. K. F. T. Copeland, “Modulation of HIV-1 transcription by cytokines and chemokines,” Mini-Reviews in Medicinal Chemistry, vol. 5, no. 12, pp. 1093–1101, 2005. View at Scopus
  75. F. C. Krebs, S. R. Miller, B. J. Catalone et al., “Comparative in vitro sensitivities of human immune cell lines, vaginal and cervical epithelial cell lines, and primary cells to candidate microbicides nonoxynol 9, C31G, and sodium dodecyl sulfate,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 7, pp. 2292–2298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Lassen, Y. Han, Y. Zhou, J. Siliciano, and R. F. Siliciano, “The multifactorial nature of HIV-1 latency,” Trends in Molecular Medicine, vol. 10, no. 11, pp. 525–531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. J. O. Liu, “The yins of T cell activation,” Science's STKE, vol. 2005, no. 265, p. re1, 2005. View at Scopus
  78. J. Brady and F. Kashanchi, “Tat gets the “green” light on transcription initiation,” Retrovirology, vol. 2, article 69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. A. I. Dayton, J. G. Sodroski, and C. A. Rosen, “The trans-activator gene of the human T cell lymphotropic virus type III is required for replication,” Cell, vol. 44, no. 6, pp. 941–947, 1986. View at Scopus
  80. A. G. Fisher, M. B. Feinberg, and S. F. Josephs, “The trans-activator gene of HTLV-III is essential for virus replication,” Nature, vol. 320, no. 6060, pp. 367–371, 1986. View at Scopus
  81. M. F. Laspia, A. P. Rice, and M. B. Mathews, “Synergy between HIV-1 Tat and adenovirus E1A is principally due to stabilization of transcriptional elongation,” Genes and Development, vol. 4, no. 12, pp. 2397–2408, 1990. View at Scopus
  82. S. Ghosh, M. J. Selby, and B. M. Peterlin, “Synergism between Tat and VP16 in trans-activation of HIV-1 LTR,” Journal of Molecular Biology, vol. 234, no. 3, pp. 610–619, 1993. View at Publisher · View at Google Scholar · View at Scopus
  83. T. P. Cujec, H. Okamoto, K. Fujinaga et al., “The HIV transactivator Tat binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II,” Genes and Development, vol. 11, no. 20, pp. 2645–2657, 1997. View at Scopus
  84. L. F. García-Martínez, G. Mavankal, J. M. Neveu, W. S. Lane, D. Ivanov, and R. B. Gaynor, “Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription,” EMBO Journal, vol. 16, no. 10, pp. 2836–2850, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. C. A. Parada and R. G. Roeder, “Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain,” Nature, vol. 384, no. 6607, pp. 375–378, 1996. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Berkhout, R. H. Silverman, and K. T. Jeang, “Tat trans-activates the human immunodeficiency virus through a nascent RNA target,” Cell, vol. 59, no. 2, pp. 273–282, 1989. View at Scopus
  87. M. A. Muesing, D. H. Smith, and D. J. Capon, “Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein,” Cell, vol. 48, no. 4, pp. 691–701, 1987. View at Scopus
  88. T. Raha, S. W. Cheng, and M. R. Green, “HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs,” PLoS Biology, vol. 3, no. 2, article e44, 2005. View at Scopus
  89. M. J. Selby, E. S. Bain, P. A. Luciw, and B. M. Peterlin, “Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by Tat through the HIV-1 long terminal repeat,” Genes & Development, vol. 3, no. 4, pp. 547–558, 1989. View at Scopus
  90. M. J. Churcher, C. Lamont, F. Hamy et al., “High affinity binding of TAR RNA by the human immunodeficiency virus type-1 Tat protein requires base-pairs in the RNA stem and amino acid residues flanking the basic region,” Journal of Molecular Biology, vol. 230, no. 1, pp. 90–110, 1993. View at Publisher · View at Google Scholar · View at Scopus
  91. Y. Zhu, T. Pe'ery, J. Peng et al., “Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro,” Genes and Development, vol. 11, no. 20, pp. 2622–2632, 1997. View at Scopus
  92. P. Wei, M. E. Garber, S. M. Fang, W. H. Fischer, and K. A. Jones, “A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA,” Cell, vol. 92, no. 4, pp. 451–462, 1998. View at Publisher · View at Google Scholar · View at Scopus
  93. Q. Zhou, D. Chen, E. Pierstorff, and K. Luo, “Transcription elongation factor P-TEFb mediates Tat activation of HIV-1 transcription at multiple stages,” EMBO Journal, vol. 17, no. 13, pp. 3681–3691, 1998. View at Publisher · View at Google Scholar · View at Scopus
  94. R. Ghose, L. Y. Liou, C. H. Herrmann, and A. P. Rice, “Induction of TAK (cyclin T1/P-TEFb) in purified resting CD4+ T lymphocytes by combination of cytokines,” Journal of Virology, vol. 75, no. 23, pp. 11336–11343, 2001. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Emiliani, W. Fischle, M. Ott, C. van Lint, C. A. Amella, and E. Verdin, “Mutations in the Tat gene are responsible for human immunodeficiency virus type 1 postintegration latency in the U1 cell line,” Journal of Virology, vol. 72, no. 2, pp. 1666–1670, 1998. View at Scopus
  96. S. Emiliani, C. van Lint, W. Fischle et al., “A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6377–6381, 1996. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Yankulov and D. Bentley, “Transcriptional control: Tat cofactors and transcriptional elongation,” Current Biology, vol. 8, no. 13, pp. R447–R449, 1998. View at Scopus
  98. C. Das, S. P. Edgcomb, R. Peteranderl, L. Chen, and A. D. Frankel, “Evidence for conformational flexibility in the Tat-TAR recognition motif of cyclin T1,” Virology, vol. 318, no. 1, pp. 306–317, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. R. E. Jeeninga, M. Hoogenkamp, M. Armand-Ugon, M. de Baar, K. Verhoef, and B. Berkhout, “Functional differences between the long terminal repeat transcriptional promoters of human immunodeficiency virus type 1 subtypes A through G,” Journal of Virology, vol. 74, no. 8, pp. 3740–3751, 2000. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Kurosu, T. Mukai, W. Auwanit, P. I. N. Ayuthaya, S. Saeng-Aroon, and K. Ikuta, “Variable sequences in the long terminal repeat and its downstream region of some of HIV type 1 CRF01_AE recently distributing among Thai carriers,” AIDS Research and Human Retroviruses, vol. 17, no. 9, pp. 863–866, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. J. K. Carr, M. O. Salminen, C. Koch et al., “Full-length sequence and mosaic structure of a human immunodeficiency virus type 1 isolate from Thailand,” Journal of Virology, vol. 70, no. 9, pp. 5935–5943, 1996. View at Scopus
  102. F. Gao, D. L. Robertson, S. G. Morrison et al., “The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin,” Journal of Virology, vol. 70, no. 10, pp. 7013–7029, 1996. View at Scopus
  103. M. A. Montano, V. A. Novitsky, J. T. Blackard, N. L. Cho, D. A. Katzenstein, and M. Essex, “Divergent transcriptional regulation among expanding human immunodeficiency virus type 1 subtypes,” Journal of Virology, vol. 71, no. 11, pp. 8657–8665, 1997. View at Scopus
  104. E. R. de Arellano, V. Soriano, and A. Holguin, “Genetic analysis of regulatory, promoter, and TAR regions of LTR sequences belonging to HIV type 1 non-B subtypes,” AIDS Research and Human Retroviruses, vol. 21, no. 11, pp. 949–954, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. M. A. Montano, C. P. Nixon, and M. Essex, “Dysregulation through the NF-κB enhancer and TATA box of the human immunodeficiency virus type 1 subtype E promoter,” Journal of Virology, vol. 72, no. 10, pp. 8446–8452, 1998. View at Scopus
  106. T. J. Scriba, T. de Villiers, F. K. Treurnicht et al., “Characterization of the South African HIV type 1 subtype C complete 5' long terminal repeat, nef, and regulatory genes,” AIDS Research and Human Retroviruses, vol. 18, no. 2, pp. 149–159, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. I. D'Orso and A. D. Frankel, “Tat acetylation modulates assembly of a viral-host RNA-protein transcription complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3101–3106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. K. Asamitsu, Y. Hibi, K. Imai et al., “Functional characterization of human cyclin T1 N-terminal region for human immunodeficiency virus-1 Tat transcriptional activation,” Journal of Molecular Biology, vol. 410, no. 5, pp. 887–895, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. M. E. Dahmus, “Phosphorylation of the C-terminal domain of RNA polymerase II,” Biochimica et Biophysica Acta, vol. 1261, no. 2, pp. 171–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Q. Svejstrup, Y. Li, J. Fellows, A. Gnatt, S. Bjorklund, and R. D. Kornberg, “Evidence for a mediator cycle at the initiation of transcription,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 12, pp. 6075–6078, 1997.
  111. I. D'Orso, J. R. Grunwell, R. L. Nakamura, C. Das, and A. D. Frankel, “Targeting Tat inhibitors in the assembly of human immunodeficiency virus type 1 transcription complexes,” Journal of Virology, vol. 82, no. 19, pp. 9492–9504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. G. Marzio, M. Tyagi, M. I. Gutierrez, and M. Giacca, “HIV-1 Tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 23, pp. 13519–13524, 1998. View at Publisher · View at Google Scholar · View at Scopus
  113. A. E. L. Kharroubi and M. A. Martin, “cis-acting sequences located downstream of the human immunodeficiency virus type 1 promoter affect its chromatin structure and transcriptional activity,” Molecular and Cellular Biology, vol. 16, no. 6, pp. 2958–2966, 1996. View at Scopus
  114. L. Deng, C. de la Fuente, P. Fu et al., “Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones,” Virology, vol. 277, no. 2, pp. 278–295, 2000. View at Publisher · View at Google Scholar · View at Scopus
  115. M. Benkirane, R. F. Chun, H. Xiao et al., “Activation of integrated provirus requires histone acetyltransferase: p300 and P/CAF are coactivators for HIV-1 tat,” Journal of Biological Chemistry, vol. 273, no. 38, pp. 24898–24905, 1998. View at Publisher · View at Google Scholar · View at Scopus
  116. V. Brès, R. Kiernan, S. Emiliani, and M. Benkirane, “Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22215–22221, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. V. Brès, H. Tagami, J. M. Péloponèse et al., “Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF,” EMBO Journal, vol. 21, no. 24, pp. 6811–6819, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. C. van Lint, S. Emiliani, M. Ott, and E. Verdin, “Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation,” EMBO Journal, vol. 15, no. 5, pp. 1112–1120, 1996. View at Scopus
  119. B. Furia, L. Deng, K. Wu et al., “Enhancement of nuclear factor-κB acetylation by coactivator p300 and HIV-1 Tat proteins,” Journal of Biological Chemistry, vol. 277, no. 7, pp. 4973–4980, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. C. J. Wilson, D. M. Chao, A. N. Imbalzano, G. R. Schnitzler, R. E. Kingston, and R. A. Young, “RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling,” Cell, vol. 84, no. 2, pp. 235–244, 1996. View at Publisher · View at Google Scholar · View at Scopus
  121. C. L. Peterson and J. W. Tamkun, “The SWI-SNF complex: a chromatin remodeling machine,” Trends in Biochemical Sciences, vol. 20, no. 4, pp. 143–146, 1995. View at Publisher · View at Google Scholar · View at Scopus
  122. C. Tréand, I. Du Chéné, V. Brès et al., “Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter,” EMBO Journal, vol. 25, no. 8, pp. 1690–1699, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. T. Mahmoudi, M. Parra, R. G. J. Vries et al., “The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter,” Journal of Biological Chemistry, vol. 281, no. 29, pp. 19960–19968, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Henderson, A. Holloway, R. Reeves, and D. J. Tremethick, “Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter,” Molecular and Cellular Biology, vol. 24, no. 1, pp. 389–397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  125. K. Zhao, W. Wang, O. J. Rando et al., “Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling,” Cell, vol. 95, no. 5, pp. 625–636, 1998. View at Scopus
  126. X. Shen, H. Xiao, R. Ranallo, W. H. Wu, and C. Wu, “Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates,” Science, vol. 299, no. 5603, pp. 112–114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  127. D. J. Steger, E. S. Haswell, A. L. Miller, S. R. Wente, and E. K. O'Shea, “Regulation of chromatin remodeling by inositol polyphosphates,” Science, vol. 299, no. 5603, pp. 114–116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. K. T. Jeang, R. Chun, N. H. Lin, A. Gatignol, C. G. Glabe, and H. Fan, “In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor,” Journal of Virology, vol. 67, no. 10, pp. 6224–6233, 1993. View at Scopus
  129. R. F. Chun, O. J. Semmes, C. Neuveut, and K. T. Jeang, “Modulation of Sp1 phosphorylation by human immunodeficiency virus type 1 tat,” Journal of Virology, vol. 72, no. 4, pp. 2615–2629, 1998. View at Scopus
  130. D. Chen and Q. Zhou, “Tat activates human immunodeficiency virus type 1 transcriptional elongation independent of TFIIH kinase,” Molecular and Cellular Biology, vol. 19, no. 4, pp. 2863–2871, 1999. View at Scopus
  131. R. F. Siliciano and W. C. Greene, “HIV Latency,” Cold Spring Harbor Perspectives in Medicine, vol. 1, no. 1, atricle a007096, 2011.
  132. K. Fujinaga, R. Taube, J. Wimmer, T. P. Cujec, and B. M. Peterlin, “Interactions between human cyclin T, tat, and the transactivation response element (TAR) are disrupted by a cysteine to tyrosine substitution found in mouse cyclin T,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 4, pp. 1285–1290, 1999. View at Publisher · View at Google Scholar · View at Scopus
  133. C. Ambrosino, M. R. Ruocco, X. Chen et al., “HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein β (NF-IL6) transcription factors,” Journal of Biological Chemistry, vol. 272, no. 23, pp. 14883–14892, 1997. View at Publisher · View at Google Scholar · View at Scopus
  134. X. Liu, M. Jana, S. Dasgupta et al., “Human immunodeficiency virus type 1 (HIV-1) Tat induces nitric-oxide synthase in human astroglia,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39312–39319, 2002. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Mukerjee, B. E. Sawaya, K. Khalili, and S. Amini, “Association of p65 and C/EBPβ with HIV-1 LTR modulates transcription of the viral promoter,” Journal of Cellular Biochemistry, vol. 100, no. 5, pp. 1210–1216, 2007.
  136. F. Macián and A. Rao, “Reciprocal modulatory interaction between human immunodeficiency virus type 1 Tat and transcription factor NFAT1,” Molecular and Cellular Biology, vol. 19, no. 5, pp. 3645–3653, 1999. View at Scopus
  137. N. Kim, S. Kukkonen, S. Gupta, and A. Aldovini, “Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells,” PLoS Pathogens, vol. 6, no. 9, article e01103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. B. N. Fields, et al., Fields' Virology, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 4th edition, 2001.
  139. T. Zhu, H. Mo, N. Wang et al., “Genotypic and phenotypic characterization of HIV-1 in patients with primary infection,” Science, vol. 261, no. 5125, pp. 1179–1181, 1993. View at Scopus
  140. S. Opi, J. M. Péloponèse, D. Esquieu et al., “Tat HIV-1 primary and tertiary structures critical to immune response against non-homologous variants,” Journal of Biological Chemistry, vol. 277, no. 39, pp. 35915–35919, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. G. van Marle and C. Power, “Human immunodeficiency virus type 1 genetic diversity in the nervous system: evolutionary epiphenomenon or disease determinant?” Journal of NeuroVirology, vol. 11, no. 2, pp. 107–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. N. B. Siddappa, M. Venkatramanan, P. Venkatesh et al., “Transactivation and signaling functions of Tat are not correlated: biological and immunological characterization of HIV-1 subtype-C Tat protein,” Retrovirology, vol. 3, article 53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  143. G. Turk, M. Carobene, A. Monczor, A. E. Rubio, M. Gómez-Carrillo, and H. Salomón, “Higher transactivation activity associated with LTR and Tat elements from HIV-I BF intersubtype recombinant variants,” Retrovirology, vol. 3, article 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. T. Kurosu, T. Mukai, S. Komoto et al., “Human immunodeficiency virus type 1 subtype C exhibits higher transactivation activity of Tat than subtypes B and E,” Microbiology and Immunology, vol. 46, no. 11, pp. 787–799, 2002. View at Scopus
  145. G. R. Campbell, J. D. Watkins, K. K. Singh, E. P. Loret, and S. A. Spector, “Human immunodeficiency virus type 1 subtype C Tat fails to induce intracellular calcium flux and induces reduced tumor necrosis factor production from monocytes,” Journal of Virology, vol. 81, no. 11, pp. 5919–5928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  146. U. Ranga, R. Shankarappa, N. B. Siddappa et al., “Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine,” Journal of Virology, vol. 78, no. 5, pp. 2586–2590, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. U. Neogi, S. Gupta, P. N. Sahoo, et al., “Genetic characterization of 5 HIV-1 Tat exon 1 from a southern Indian clinical cohort: identification of unique epidemiological signature residues,” AIDS Research and Human Retroviruses. In press.
  148. L. Li, B. Aiamkitsumrit, V. Pirrone et al., “Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment,” Journal of NeuroVirology, vol. 17, no. 1, pp. 92–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  149. S. Spira, M. A. Wainberg, H. Loemba, D. Turner, and B. G. Brenner, “Impact of clade diversity on HIV-1 virulence, antiretroviral drug sensitivity and drug resistance,” Journal of Antimicrobial Chemotherapy, vol. 51, no. 2, pp. 229–240, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. F. Gao, D. L. Robertson, C. D. Carruthers et al., “A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1,” Journal of Virology, vol. 72, no. 7, pp. 5680–5698, 1998. View at Scopus
  151. S. S. Dey, Y. Xue, M. P. Joachimiak, et al., “Mutual information analysis reveals coevolving residues in Tat that compensate for two distinct functions in HIV-1 gene expression,” The Journal of Biological Chemistry, vol. 287, no. 11, pp. 7945–7955, 2012.
  152. M. C. D. G. Huigen, W. Kamp, and H. S. L. M. Nottet, “Multiple effects of HIV-1 trans-activator protein on the pathogenesis of HIV-1 infection,” European Journal of Clinical Investigation, vol. 34, no. 1, pp. 57–66, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. A. Banerjee, M. Strazza, and B. Wigdahl, “Role of mu-opioids as cofactors in human immunodeficiency virus type 1 disease progression and neuropathogenesis,” Neurovirology, vol. 17, no. 4, pp. 291–302, 2011.
  154. I. L. Tan and J. C. McArthur, “HIV-associated neurological disorders: a guide to pharmacotherapy,” CNS Drugs, vol. 26, no. 2, pp. 123–134, 2012. View at Publisher · View at Google Scholar · View at Scopus
  155. N. Z. Mothobi and B. J. Brew, “Neurocognitive dysfunction in the highly active antiretroviral therapy era,” Current Opinion in Infectious Diseases, vol. 25, no. 1, pp. 4–9, 2012.
  156. C. Power, M. J. Gill, and R. T. Johnson, “Progress in clinical neurosciences: the neuropathogenesis of HIV infection: Host-virus interaction and the impact of therapy,” Canadian Journal of Neurological Sciences, vol. 29, no. 1, pp. 19–32, 2002. View at Scopus
  157. S. L. Letendre, R. J. Ellis, B. M. Ances, and J. A. McCutchan, “Neurologic complications of HIV disease and their treatment,” Topics in HIV Medicine, vol. 18, no. 2, pp. 45–55, 2010. View at Scopus
  158. L. Boven, F. Noorbakhsh, G. Bouma et al., “Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation,” Journal of NeuroVirology, vol. 13, no. 2, pp. 173–184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. K. Wong, A. Sharma, S. Awasthi et al., “HIV-1 Tat interactions with p300 and PCAF transcriptional coactivators inhibit histone acetylation and neurotrophin signaling through CREB,” Journal of Biological Chemistry, vol. 280, no. 10, pp. 9390–9399, 2005. View at Publisher · View at Google Scholar · View at Scopus
  160. K. Conant, A. Garzino-Demo, A. Nath et al., “Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3117–3121, 1998. View at Publisher · View at Google Scholar · View at Scopus
  161. M. V. Aksenova, J. M. Silvers, M. Y. Aksenov et al., “HIV-1 Tat neurotoxicity in primary cultures of rat midbrain fetal neurons: changes in dopamine transporter binding and immunoreactivity,” Neuroscience Letters, vol. 395, no. 3, pp. 235–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. L. Buscemi, D. Ramonet, and J. D. Geiger, “Human immunodeficiency virus type-1 protein Tat induces tumor necrosis factor-α-mediated neurotoxicity,” Neurobiology of Disease, vol. 26, no. 3, pp. 661–670, 2007. View at Publisher · View at Google Scholar · View at Scopus
  163. O. Kutsch, J. W. Oh, A. Nath, and E. N. Benveniste, “Induction of the chemokines interleukin-8 and IP-10 by human immunodeficiency virus type 1 Tat in astrocytes,” Journal of Virology, vol. 74, no. 19, pp. 9214–9221, 2000. View at Publisher · View at Google Scholar · View at Scopus
  164. R. Williams, H. Yao, N. K. Dhillon, and S. J. Buch, “HIV-1 Tat co-operates with IFN-γ and TNF-α to increase CXCL10 in human astrocytes,” PLoS ONE, vol. 4, no. 5, article e5709, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. A. C. Bratanich, C. Liu, J. C. McArthur et al., “Brain-derived HIV-1 Tat sequences from AIDS patients with dementia show increased molecular heterogeneity,” Journal of NeuroVirology, vol. 4, no. 4, pp. 387–393, 1998. View at Scopus
  166. M. Mayne, A. C. Bratanich, P. Chen, F. Rana, A. Nath, and C. Power, “HIV-1 Tat molecular diversity and induction of TNF-α: implications for HIV-induced neurological disease,” NeuroImmunoModulation, vol. 5, no. 3-4, pp. 184–192, 1998. View at Publisher · View at Google Scholar · View at Scopus
  167. D. Cowley, L. R. Gray, S. L. Wesselingh, P. R. Gorry, and M. J. Churchill, “Genetic and functional heterogeneity of CNS-derived Tat alleles from patients with HIV-associated dementia,” Journal of NeuroVirology, vol. 17, no. 1, pp. 70–81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  168. T. H. Hogan, D. L. Stauff, F. C. Krebs, S. Gartner, S. J. Quiterio, and B. Wigdahl, “Structural and functional evolution of human immunodeficiency virus type 1 long terminal repeat CCAAT/enhancer binding protein sites and their use as molecular markers for central nervous system disease progression,” Journal of NeuroVirology, vol. 9, no. 1, pp. 55–68, 2003. View at Scopus
  169. H. L. Ross, M. R. Nonnemacher, T. H. Hogan et al., “Interaction between CCAAT/enhancer binding protein and cyclic amp response element binding protein 1 regulates human immunodeficiency virus type 1 transcription in cells of the monocyte/macrophage lineage,” Journal of Virology, vol. 75, no. 4, pp. 1842–1856, 2001. View at Publisher · View at Google Scholar · View at Scopus
  170. M. R. Nonnemacher, B. P. Irish, Y. Liu, D. Mauger, and B. Wigdahl, “Specific sequence configurations of HIV-1 LTR G/C box array result in altered recruitment of Sp isoforms and correlate with disease progression,” Journal of Neuroimmunology, vol. 157, no. 1-2, pp. 39–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  171. L. Li, B. Aiamkitsumrit, V. Pirrone et al., “Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment,” Journal of NeuroVirology, vol. 17, no. 1, pp. 92–109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. J. B. Johnston, K. Zhang, C. Silva, et al., “HIV-1 Tat neurotoxicity is prevented by matrix metalloproteinase inhibitors,” Annals of Neurology, vol. 49, no. 2, pp. 230–241, 2001.
  173. C. Silva, K. Zhang, S. Tsutsui, J. K. Holden, M. J. Gill, and C. Power, “Growth hormone prevents human immunodeficiency virus-induced neuronal p53 expression,” Annals of Neurology, vol. 54, no. 5, pp. 605–614, 2003. View at Publisher · View at Google Scholar · View at Scopus
  174. T. H. Burdo, S. Gartner, D. Mauger, and B. Wigdahl, “Region-specific distribution of human immunodeficiency virus type 1 long terminal repeats containing specific configurations of CCAAT/enhancer-binding protein site II in brains derived from demented and nondemented patients,” Journal of NeuroVirology, vol. 10, supplement 1, pp. 7–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  175. T. H. Hogan, M. R. Nonnemacher, F. C. Krebs, A. Henderson, and B. Wigdahl, “HIV-1 Vpr binding to HIV-1 LTR C/EBP cis-acting elements and adjacent regions is sequence-specific,” Biomedicine and Pharmacotherapy, vol. 57, no. 1, pp. 41–48, 2003. View at Publisher · View at Google Scholar · View at Scopus
  176. S. N. Richter and G. Palù, “Inhibitors of HIV-1 Tat-mediated transactivation,” Current Medicinal Chemistry, vol. 13, no. 11, pp. 1305–1315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  177. H. Siomi, H. Shida, M. Maki, and M. Hatanaka, “Effects of a highly basic region of human immunodeficiency virus Tat protein on nucleolar localization,” Journal of Virology, vol. 64, no. 4, pp. 1803–1807, 1990. View at Scopus
  178. I. Choudhury, J. Wang, S. Stein, A. Rabson, and M. J. Leibowitz, “Translational effects of peptide antagonists of Tat protein of human immunodeficiency virus type 1,” Journal of General Virology, vol. 80, part 3, pp. 777–782, 1999. View at Scopus
  179. V. Cecchetti, C. Parolin, S. Moro et al., “6-aminoquinolones as new potential anti-HIV agents,” Journal of Medicinal Chemistry, vol. 43, no. 20, pp. 3799–3802, 2000. View at Publisher · View at Google Scholar · View at Scopus
  180. S. Richter, C. Parolin, B. Gatto et al., “Inhibition of human immunodeficiency virus type 1 Tat-trans-activation-responsive region interaction by an antiviral quinolone derivative,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 5, pp. 1895–1899, 2004. View at Publisher · View at Google Scholar · View at Scopus
  181. H. Y. Mei, M. Cui, A. Heldsinger et al., “Inhibitors of protein-RNA complexation that target the RNA: specific recognition of human immunodeficiency virus type 1 TAR RNA by small organic molecules,” Biochemistry, vol. 37, no. 40, pp. 14204–14212, 1998. View at Publisher · View at Google Scholar · View at Scopus
  182. M. Stevens, C. Pannecouque, E. de Clercq, and J. Balzarini, “Inhibition of human immunodeficiency virus by a new class of pyridine oxide derivatives,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 9, pp. 2951–2957, 2003. View at Publisher · View at Google Scholar · View at Scopus
  183. M. Stevens, C. Pannecouque, E. de Clercq, and J. Balzarini, “Novel human immunodeficiency virus (HIV) inhibitors that have a dual mode of anti-HIV action,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 10, pp. 3109–3116, 2003. View at Publisher · View at Google Scholar · View at Scopus
  184. E. de Clercq and D. Schols, “Inhibition of HIV infection by CXCR4 and CCR5 chemokine receptor antagonists,” Antiviral Chemistry and Chemotherapy, vol. 12, supplement 1, pp. 19–31, 2001. View at Scopus
  185. N. Gelus, F. Hamy, and C. Bailly, “Molecular basis of HIV-1 TAR RNA specific recognition by an acridine Tat-antagonist,” Bioorganic and Medicinal Chemistry, vol. 7, no. 6, pp. 1075–1079, 1999. View at Publisher · View at Google Scholar · View at Scopus
  186. S. Wang, P. W. Huber, M. Cui, A. W. Czarnik, and H. Y. Mei, “Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism,” Biochemistry, vol. 37, no. 16, pp. 5549–5557, 1998. View at Publisher · View at Google Scholar · View at Scopus
  187. K. Hamasaki and A. Ueno, “Aminoglycoside antibiotics, neamine and its derivatives as potent inhibitors for the RNA-protein interactions derived from HIV-1 activators,” Bioorganic and Medicinal Chemistry Letters, vol. 11, no. 4, pp. 591–594, 2001. View at Publisher · View at Google Scholar · View at Scopus
  188. J. M. Jacque, K. Triques, and M. Stevenson, “Modulation of HIV-1 replication by RNA interference,” Nature, vol. 418, no. 6896, pp. 435–438, 2002. View at Publisher · View at Google Scholar · View at Scopus
  189. P. Corbeau, “Interfering RNA and HIV: reciprocal interferences,” PLoS Pathogens, vol. 4, no. 9, article e1000162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  190. A. J. Fulcher and D. A. Jans, “The HIV-1 Tat transactivator protein: a therapeutic target?” IUBMB Life, vol. 55, no. 12, pp. 669–680, 2003. View at Publisher · View at Google Scholar · View at Scopus
  191. M. Giacca, “The HIV-1 Tat protein: a multifaceted target for novel therapeutic opportunities,” Current Drug Targets, vol. 4, no. 4, pp. 277–285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  192. V. Pirrone, B. Wigdahl, and F. C. Krebs, “The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1,” Antiviral Research, vol. 90, no. 3, pp. 168–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  193. M. Rusnati, G. Taraboletti, C. Urbinati et al., “Thrombospondin-1/HIV-1 Tat protein interaction: modulation of the biological activity of extracellular Tat,” FASEB Journal, vol. 14, no. 13, pp. 1917–1930, 2000. View at Scopus
  194. A. Corallini, M. Betti, M. Rusnati et al., “Characterization of the effects of two polysulfonated distamycin A derivatives, PNU145156E and PNU153429, on HIV type 1 Tat protein,” AIDS Research and Human Retroviruses, vol. 14, no. 17, pp. 1561–1571, 1998. View at Scopus
  195. K. Watson, N. J. Gooderham, D. S. Davies, and R. J. Edwards, “Interaction of the transactivating protein HIV-1 Tat with sulphated polysaccharides,” Biochemical Pharmacology, vol. 57, no. 7, pp. 775–783, 1999. View at Publisher · View at Google Scholar · View at Scopus
  196. H. Zhao, J. Li, and L. Jiang, “Inhibition of HIV-1 TAR RNA-Tat peptide complexation using poly(acrylic acid),” Biochemical and Biophysical Research Communications, vol. 320, no. 1, pp. 95–99, 2004. View at Publisher · View at Google Scholar · View at Scopus
  197. L. W. Meredith, H. Sivakumaran, L. Major, A. Suhrbier, and D. Harrich, “Potent inhibition of HIV-1 replication by a Tat mutant,” PLoS ONE, vol. 4, no. 11, article e7769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  198. C. Ulich, D. Harrich, P. Estes, and R. B. Gaynor, “Inhibition of human immunodeficiency virus type 1 replication is enhanced by a combination of transdominant Tat and Rev proteins,” Journal of Virology, vol. 70, no. 7, pp. 4871–4876, 1996. View at Scopus
  199. C. Rossi, P. G. Balboni, M. Betti et al., “Inhibition of HIV-1 replication by a Tat transdominant negative mutant in human peripheral blood lymphocytes from healthy donors and HIV-1-infected patients,” Gene Therapy, vol. 4, no. 11, pp. 1261–1269, 1997. View at Scopus
  200. A. Caputo, M. P. Grossi, R. Bozzini et al., “Inhibition of HIV-1 replication and reactivation from latency by Tat transdominant negative mutants in the cysteine rich region,” Gene Therapy, vol. 3, no. 3, pp. 235–245, 1996. View at Scopus
  201. G. Goldstein and J. J. Chicca II, “A universal anti-HIV-1 Tat epitope vaccine that is fully synthetic and self-adjuvanting,” Vaccine, vol. 28, no. 4, pp. 1008–1014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  202. W. Huang, G. Varani, and G. P. Drobny, “13C/15N-19F intermolecular REDOR NMR study of the interaction of TAR RNA with Tat peptides,” Journal of the American Chemical Society, vol. 132, no. 50, pp. 17643–17645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. A. Davidson, K. Patora-Komisarska, J. A. Robinson, and G. Varani, “Essential structural requirements for specific recognition of HIV TAR RNA by peptide mimetics of Tat protein,” Nucleic Acids Research, vol. 39, no. 1, pp. 248–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  204. V. Pirrone, N. Thakkar, J. M. Jacobson, B. Wigdahl, and F. C. Krebs, “Combinatorial approaches to the prevention and treatment of HIV-1 infection,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 5, pp. 1831–1842, 2011. View at Publisher · View at Google Scholar · View at Scopus
  205. S. Biglione, S. A. Byers, J. P. Price et al., “Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex,” Retrovirology, vol. 4, article 47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  206. J. Bai, J. Sui, R. Y. Zhu et al., “Inhibition of Tat-mediated transactivation and HIV-1 replication by human anti-hCyclinT1 intrabodies,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1433–1442, 2003. View at Publisher · View at Google Scholar · View at Scopus
  207. K. Fujinaga, D. Irwin, M. Geyer, and B. M. Peterlin, “Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression,” Journal of Virology, vol. 76, no. 21, pp. 10873–10881, 2002. View at Publisher · View at Google Scholar · View at Scopus
  208. J. H. N. Yik, R. Chen, R. Nishimura, J. L. Jennings, A. J. Link, and Q. Zhou, “Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA,” Molecular Cell, vol. 12, no. 4, pp. 971–982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  209. J. H. N. Yik, R. Chen, A. C. Pezda, C. S. Samford, and Q. Zhou, “A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb,” Molecular and Cellular Biology, vol. 24, no. 12, pp. 5094–5105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  210. A. Dorr, V. Kiermer, A. Pedal et al., “Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain,” EMBO Journal, vol. 21, no. 11, pp. 2715–2723, 2002. View at Publisher · View at Google Scholar · View at Scopus
  211. T. Ammosova, R. Berro, M. Jerebtsova et al., “Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription,” Retrovirology, vol. 3, article 78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  212. C. Chiao, T. Bader, J. E. Stenger, W. Baldwin, J. Brady, and J. C. Barrett, “HIV type 1 Tat inhibits tumor necrosis factor α-induced repression of tumor necrosis factor receptor p55 and amplifies tumor necrosis factor α activity in stably Tat-transfected HeLa cells,” AIDS Research and Human Retroviruses, vol. 17, no. 12, pp. 1125–1132, 2001. View at Publisher · View at Google Scholar · View at Scopus
  213. M. A. Munoz-Fernandez, J. Navarro, E. Obregon et al., “Immunological and virological markers of disease progression in HIV- infected children,” Acta Paediatrica, vol. 421, pp. 46–51, 1997. View at Scopus