About this Journal Submit a Manuscript Table of Contents
Advances in Virology
Volume 2012 (2012), Article ID 267483, 10 pages
http://dx.doi.org/10.1155/2012/267483
Review Article

Hepatitis C Variability, Patterns of Resistance, and Impact on Therapy

Division of Gastroenterology, West Penn Allegheny Health System, 1307 Federal Street, Ste 301, Pittsburgh, PA 15212, USA

Received 13 March 2012; Accepted 10 May 2012

Academic Editor: Christoph Boesecke

Copyright © 2012 Cristina Simona Strahotin and Michael Babich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Wasley, S. Grytdal, and D. Daniels, “Surveillance for acute viral hepatitis—United States, 2007,” MMWR. Surveillance Summaries, vol. 58, no. 3, pp. 1–27, 2009. View at Scopus
  2. Centers for Disease Control and Prevention, “Recommendations for prevention and control of hepatitis C virus (HCV) infection and HCV-related chronic disease,” MMWR Recommendations and Reports, vol. 47, no. RR-19, pp. 1–39, 1998.
  3. M. J. Alter, “Epidemiology of hepatitis C,” Hepatology, vol. 26, no. 3, pp. 62S–65S, 1997. View at Scopus
  4. D. Lavanchy, “Evolving epidemiology of hepatitis C virus,” Clinical Microbiology and Infection, vol. 17, no. 2, pp. 107–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. G. L. Davis, M. J. Alter, H. El-Serag, T. Poynard, and L. W. Jennings, “Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression,” Gastroenterology, vol. 138, no. 2, pp. 513–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. Centers for Disease Control and Prevention, CDC Health Information for International Travel 2012, Oxford University Press, New York, NY, USA, 2012, http://wwwnc.cdc.gov/travel/yellowbook/2012/chapter-3-infectious-diseases-related-to-travel/hepatitis-c.htm.
  7. D. Moradpour, F. Penin, and C. M. Rice, “Replication of hepatitis C virus,” Nature Reviews Microbiology, vol. 5, no. 6, pp. 453–463, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. O. De Beeck and J. Dubuisson, “Topology of hepatitis C virus envelope glycoproteins,” Reviews in Medical Virology, vol. 13, no. 4, pp. 233–241, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. L. Choo, K. H. Richman, J. H. Han et al., “Genetic organization and diversity of the hepatitis C virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 6, pp. 2451–2455, 1991. View at Scopus
  10. R. Jubin, “Hepatitis C IRES: translating translation into a therapeutic target,” Current Opinion in Molecular Therapeutics, vol. 3, no. 3, pp. 278–287, 2001. View at Scopus
  11. J. Dubuisson, “Hepatitis C virus proteins,” World Journal of Gastroenterology, vol. 13, no. 17, pp. 2406–2415, 2007. View at Scopus
  12. M. B. Zeisel, H. Barth, C. Schuster, and T. F. Baumert, “Hepatitis C virus entry: molecular mechanisms and targets for antiviral therapy,” Frontiers in Bioscience, vol. 14, no. 9, pp. 3274–3285, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Kohaar, A. Ploss, E. Korol et al., “Splicing diversity of the human OCLN gene and its biological significance for hepatitis C virus entry,” Journal of Virology, vol. 84, no. 14, pp. 6987–6994, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. H. Syed, Y. Amako, and A. Siddiqui, “Hepatitis C virus hijacks host lipid metabolism,” Trends in Endocrinology and Metabolism, vol. 21, no. 1, pp. 33–40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. J. M. Pawlotsky, “Hepatitis C virus genetic variability: pathogenic and clinical implications,” Clinics in Liver Disease, vol. 7, no. 1, pp. 45–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Pawlotsky, “Hepatitis C virus population dynamics during infection,” Current Topics in Microbiology and Immunology, vol. 299, pp. 261–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Kuntzen, J. Timm, A. Berical et al., “Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naïve patients,” Hepatology, vol. 48, no. 6, pp. 1769–1778, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. D. J. Bartels, Y. Zhou, E. Z. Zhang et al., “Natural prevalence of hepatitis C virus variants with decreased sensitivity to NS3.4A protease inhibitors in treatment-naïve subjects,” Journal of Infectious Diseases, vol. 198, no. 6, pp. 800–807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Lataillade, J. Chiarella, R. Yang et al., “Prevalence and clinical significance of HIV drug resistance mutations by ultra-deep sequencing in antiretroviral-naïve subjects in the CASTLE study,” PloS ONE, vol. 5, no. 6, Article ID e10952, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Rodriguez, S. Chevaliez, P. Bensadoun, et al., “Ultra-deep pyrosequencing, a powerful new tool to study HBV resistance to nucleoside/nucleotide analogues, identifies preexisting HBV variants bearing resistance mutations and characterizes their on-treatment kinetics,” Hepatology, vol. 52, pp. 441A–442A, 2010.
  21. T. Verbinnen, H. Van Marck, I. Vandenbroucke et al., “Tracking the evolution of multiple in vitro hepatitis C virus replicon variants under protease inhibitor selection pressure by 454 deep sequencing,” Journal of Virology, vol. 84, no. 21, pp. 11124–11133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Chevaliez and J. M. Pawlotsky, “Interferons and their use in persistent viral infections,” Handbook of Experimental Pharmacology, vol. 189, pp. 203–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. S. Kim, J. H. Jung, T. Wakita, K. Y. Seung, and K. J. Sung, “Monitoring the antiviral effect of alpha interferon on individual cells,” Journal of Virology, vol. 81, no. 16, pp. 8814–8820, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. F. Porteu, M. Brockhaus, D. Wallach, H. Engelmann, and C. F. Nathan, “Human neutrophil elastase releases a ligand-binding fragment from the 75-kDa tumor necrosis factor (TNF) receptor: comparison with the proteolytic activity responsible for shedding of TNF receptors from stimulated neutrophils,” The Journal of Biological Chemistry, vol. 266, no. 28, pp. 18846–18853, 1991. View at Scopus
  25. E. Lien, N. B. Liabakk, A. C. Johnsen, U. Nonstad, A. Sundan, and T. Espevik, “Polymorphonuclear granulocytes enhance lipopolysaccharide-induced soluble p75 tumor necrosis factor receptor release from mononuclear cells,” European Journal of Immunology, vol. 25, no. 9, pp. 2714–2717, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Lantz, S. Malik, M. L. Slevin, and I. Olsson, “Infusion of tumor necrosis factor (TNF) causes an increase in circulating TNF-binding protein in humans,” Cytokine, vol. 2, no. 6, pp. 402–406, 1990. View at Scopus
  27. D. A. Joyce, D. P. Gibbons, P. Green, J. H. Steer, M. Feldmann, and F. M. Brennan, “Two inhibitors of pro-inflammatory cytokine release, interleukin-10 and interleukin-4, have contrasting effects on release of soluble p75 tumor necrosis factor receptor by cultured monocytes,” European Journal of Immunology, vol. 24, no. 11, pp. 2699–2705, 1994. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Tilg, W. Vogel, and C. A. Dinarello, “Interferon-α induces circulating tumor necrosis factor receptor p55 in humans,” Blood, vol. 85, no. 2, pp. 433–435, 1995. View at Scopus
  29. A. U. Neumann, S. Zeuzem, C. Ferrari, et al., “DITTO-HCV early viral kinetics report: novel decline patterns in genotype 1 but not genotypes 2 and 3 patients treated with peg-interferon alfa-2a and ribavirin,” Journal of Hepatology, vol. 36, supplement 1, article 121, 2002.
  30. J. M. Pawlotsky, C. Hezode, B. Pellegrin, et al., “Early HCV genotype 4 replication kinetics during treatment with peginterferon alpha-2a (Pegasys)-ribavirin combination: a comparison with HCV genotypes 1 and 3 kinetics,” Hepatology, vol. 36, article 291A, 2002.
  31. J. M. Pawlotsky, “Treating hepatitis C in “difficult-to-treat” patients,” The New England Journal of Medicine, vol. 351, no. 5, pp. 422–423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Y. N. Lau, R. C. Tam, T. J. Liang, and Z. Hong, “Mechanism of action of ribavirin in the combination treatment of chronic HCV infection,” Hepatology, vol. 35, no. 5, pp. 1002–1009, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. P. Bronowicki, D. Ouzan, T. Asselah et al., “Effect of ribavirin in genotype 1 patients with hepatitis C responding to pegylated interferon alfa-2a plus ribavirin,” Gastroenterology, vol. 131, no. 4, pp. 1040–1048, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. M. Contreras, Y. Hiasa, W. He, A. Terella, E. V. Schmidt, and R. T. Chung, “Viral RNA mutations are region specific and increased by ribavirin in a full-length hepatitis C virus replication system,” Journal of Virology, vol. 76, no. 17, pp. 8505–8517, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Chevaliez, R. Brillet, E. Lázaro, C. Hézode, and J. M. Pawlotsky, “Analysis of ribavirin mutagenicity in human hepatitis C virus infection,” Journal of Virology, vol. 81, no. 14, pp. 7732–7741, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Lutchman, S. Danehower, B. C. Song et al., “Mutation rate of the hepatitis C virus NS5b in patients undergoing treatment with ribavirin mono-therapy,” Gastroenterology, vol. 132, no. 5, pp. 1757–1766, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. H. Fang, L. H. Hwang, D. S. Chen, and B. L. Chiang, “Ribavirin enhancement of hepatitis C virus core antigen-specific type 1 T helper cell response correlates with the increased IL-12 level,” Journal of Hepatology, vol. 33, no. 5, pp. 791–798, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. J. J. Feld, S. Nanda, Y. Huang et al., “Hepatic gene expression during treatment with peginterferon and ribavirin: identifying molecular pathways for treatment response,” Hepatology, vol. 46, no. 5, pp. 1548–1563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. K. H. Tang, E. Herrmann, H. Cooksley et al., “Relationship between early HCV kinetics and T-cell reactivity in chronic hepatitis C genotype 1 during peginterferon and ribavirin therapy,” Journal of Hepatology, vol. 43, no. 5, pp. 776–782, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. J. J. Feld and J. H. Hoofnagle, “Mechanism of action of interferon and ribavirin in treatment of hepatitis C,” Nature, vol. 436, no. 7053, pp. 967–972, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Ji, R. Cheung, S. Cooper, et al., “Interferon alfa regulated gene expression in patients initiating interferon treatment for chronic hepatitis C,” Hepatology, vol. 37, no. 3, pp. 610–621, 2003.
  42. E. S. Araújo, C. Courtouké, and A. A. Barone, “Hepatitis C treatment: shorter and better?” Brazilian Journal of Infectious Diseases, vol. 11, no. 1, pp. 118–124, 2007. View at Publisher · View at Google Scholar
  43. A. U. Neumann, N. P. Lam, H. Dahari et al., “Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy,” Science, vol. 282, no. 5386, pp. 103–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Hézode, N. Forestier, G. Dusheiko et al., “Telaprevir and peginterferon with or without ribavirin for chronic HCV infection,” The New England Journal of Medicine, vol. 360, no. 18, pp. 1839–1850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Rong, H. Dahari, R. M. Ribeiro, and A. S. Perelson, “Rapid emergence of protease inhibitor resistance in hepatitis C virus,” Science Translational Medicine, vol. 2, pp. 1–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Clavel and A. J. Hance, “HIV drug resistance,” The New England Journal of Medicine, vol. 350, no. 10, pp. 1023–1035, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. J. M. Pawlotsky, “Therapeutic implications of hepatitis C virus resistance to antiviral drugs,” Therapeutic Advances in Gastroenterology, vol. 2, no. 4, pp. 205–219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. B. S. Adiwijaya, E. Herrmann, B. Hare et al., “A multi-variant, viral dynamic model of genotype 1 HCV to assess the in vivo evolution of protease-inhibitor resistant variants,” PLoS Computational Biology, vol. 6, no. 4, Article ID e1000745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. He, M. S. King, D. J. Kempf et al., “Relative replication capacity and selective advantage profiles of protease inhibitor-resistant hepatitis C virus (HCV) NS3 protease mutants in the HCV genotype 1b replicon system,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 3, pp. 1101–1110, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Lin, C. A. Gates, B. G. Rao et al., “In vitro studies of cross-resistance mutations against two hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061,” The Journal of Biological Chemistry, vol. 280, no. 44, pp. 36784–36791, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. C. Lin, K. Lin, Y. P. Luong et al., “In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms,” The Journal of Biological Chemistry, vol. 279, no. 17, pp. 17508–17514, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. X. Tong, R. Chase, A. Skelton, T. Chen, J. Wright-Minogue, and B. A. Malcolm, “Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034,” Antiviral Research, vol. 70, no. 2, pp. 28–38, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. X. Tong, S. Bogen, R. Chase et al., “Characterization of resistance mutations against HCV ketoamide protease inhibitors,” Antiviral Research, vol. 77, no. 3, pp. 177–185, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Welsch, F. S. Domingues, S. Susser et al., “Molecular basis of telaprevir resistance due to V36 and T54 mutations in the NS3-4A protease of the hepatitis C virus,” Genome Biology, vol. 9, no. 1, article R16, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Zhou, U. Müh, B. L. Hanzelka et al., “Phenotypic and structural analyses of hepatitis C virus NS3 protease Arg155 variants: sensitivity to telaprevir (VX-950) and interferon α,” The Journal of Biological Chemistry, vol. 282, no. 31, pp. 22619–22628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Zhou, D. J. Bartels, B. L. Hanzelka et al., “Phenotypic characterization of resistant Val36 variants of hepatitis C virus NS3-4A serine protease,” Antimicrobial Agents and Chemotherapy, vol. 52, no. 1, pp. 110–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. K. P. Romano, A. Ali, W. E. Royer, and C. A. Schiffer, “Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 49, pp. 20986–20991, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. T. L. Kieffer, C. Sarrazin, J. S. Miller et al., “Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients,” Hepatology, vol. 46, no. 3, pp. 631–639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Sarrazin, T. L. Kieffer, D. Bartels et al., “Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir,” Gastroenterology, vol. 132, no. 5, pp. 1767–1777, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. D. J. Bartels, S. DeMeyer, J. Sullivan, et al., “Summary of clinical virology findings from clinical trials of telaprevir,” in Proceedings of the 62nd Annual Meeting of the American Association for the Study of Liver Diseases, San Francisco, Calif, USA, November 2011, Abstract 1328.
  61. Incivek [package insert],” Vertex Pharmaceuticals Incorporated, Cambridge, Mass, USA, 2011.
  62. Incivo [telaprevir],” European Medicines Agency http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002313/WC500115529.pdf.
  63. S. Zeuzem, M. S. Sulkowski, F. Zoulim, et al., “Long-term follow-up of patients with chronic hepatitis C treated with telaprevir in combination with peginterferonalfa-2a and ribavirin: interim analysis of the EXTEND study,” in Proceedings of the 61st Annual Meeting of the American Association for the Study of Liver Diseases (AASLD '10), Boston, Mass, USA, October 2010, Abstract 227.
  64. K. E. Sherman, M. S. Sulkowski, F. Zoulim, et al., “Follow-up of SVR durability and viral resistance in patients with chronic hepatitis C treated with telaprevir-based regimens: interim analysis from the EXTEND study,” in Proceedings of the 62nd Annual Meeting of the American Association for the Study of Liver Diseases, San Francisco, Calif, USA, November 2011, Abstract 248.
  65. S. Susser, C. Welsch, Y. Wang et al., “Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus-infected patients,” Hepatology, vol. 50, no. 6, pp. 1709–1718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Lu, T. J. Pilot-Matias, K. D. Stewart et al., “Mutations conferring resistance to a potent hepatitis C virus serine protease inhibitor in vitro,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 6, pp. 2260–2266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Sulkowski, F. Poordad, J. McCone, et al., “BOC combined with P/R for treatment-naïve patients with HCV genotype-1: SPRINT-2 final results,” in Proceedings of the 18th Conference on Retroviruses and Opportunistic Infections (CROI '11), Boston, Mass, USA, February 2011.
  68. S. Gordon, B. Bacon, E. Lawitz, et al., “HCV RESPOND-2 final results: high sustained virologicresponse among genotype-1 previous non-responders and relapsers to pegIFN/RBV when re-treated with BOC+PEGINTRON/RBV,” in Proceedings of the 18th Conference on Retroviruses and Opportunistic Infections (CROI '11), Boston, Mass, USA, February 2011.
  69. “Victrelis [package insert],” Merck & Company Incorporated, Whitehouse Station, NJ, USA, 2011.
  70. Victrelis [boceprevir],” European Medicines Agency http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002332/WC500109786.pdf.
  71. R. J. Barnard, S. Zeuzem, J. M. Vierling, et al., “Analysis of resistance-associated amino acid variants (RAVs) in non-SVR patients enrolled in a retrospective long-term follow-up analysis of boceprevir phase III clinical studies,” in Proceedings of the 62nd Annual Meeting of the American Association for the Study of Liver Diseases, San Francisco, Calif, USA, November 2011, Abstract 164.
  72. J. M. Pawlotsky, “Treatment failure and resistance with direct-acting antiviral drugs against hepatitis C virus,” Hepatology, vol. 53, no. 5, pp. 1742–1751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. C. J. Baidick, D. J. Tenney, C. E. Mazzucco et al., “Comprehensive evaluation of hepatitis B virus reverse transcriptase substitutions associated with entecavir resistance,” Hepatology, vol. 47, no. 5, pp. 1473–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Pallier, L. Castéra, A. Soulier et al., “Dynamics of hepatitis B virus resistance to lamivudine,” Journal of Virology, vol. 80, no. 2, pp. 643–653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Palleir, C. Rodriguez, R. Brillet, P. Nordmann, C. Hézode, and J. M. Pawlotsky, “Complex dynamics of hepatitis B virus resistance to adefovir,” Hepatology, vol. 49, no. 1, pp. 50–59, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. P. Kwo, J. Lawitz, J. McCone, et al., “HCV SPRINT-1 final results: SVR 24 from a phase II study of boceprevir plus peginterferon alfa-2b/ribavirin in treatment-naïve subjects with genotype 1 chronic hepatitis C,” in Proceedings of the 44th Annual Meeting of the European Association for the Study of the Liver, Copenhagen, Denmark, April 2009.
  77. J. G. McHutchison, M. P. Manns, A. J. Muir et al., “Telaprevir for previously treated chronic HCV infection,” The New England Journal of Medicine, vol. 362, no. 14, pp. 1292–1303, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Zeuzem, P. Andreone, S. Pol, et al., “REALIZE trial final results: telaprevir-based regimen for genotype 1 hepatitis C virus infection in patients with prior null response, partial response or relapse to peginterferon/ribavirin,” in Proceedings of the EASL 46th Annual Meeting, Berlin, Germany, March 2011.
  79. I. M. Jacobson, J. G. McHutchison, G. Dusheiko et al., “Telaprevir for previously untreated chronic hepatitis C virus infection,” The New England Journal of Medicine, vol. 364, no. 25, pp. 2405–2416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Ge, J. Fellay, A. J. Thompson et al., “Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance,” Nature, vol. 461, no. 7262, pp. 399–401, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. A. J. Thompson, A. J. Muir, M. S. Sulkowski et al., “Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus,” Gastroenterology, vol. 139, no. 1, pp. 120–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. E. J. Gane, C. A. Stedman, R. J. Hyland, et al., “ELECTRON: once daily PSI-7977 plus RBV in HCV GT1/2/3,” in Proceedings of the 47th Annual Meeting of the European Association for the Study of the Liver, Barcelona, Spain, April 2012.
  83. E. Lawitz, F. Poordad, K. V. Kowdley, et al., “A 12-week interferon-free regimen of ABT-450/r, ABT-072, and ribavirin was well tolerated and achieved sustained virologic response in 91% treatment-naïve HCV IL28B-CC genotype-1-infected subject,” in Proceedings of the 47th Annual Meeting of the European Association for the Study of the Liver, Barcelona, Spain, April 2012, Abstract 1187.
  84. F. Poordad, E. Lawitz, K. V. Kowdley, et al., “12-week interferon-free regimen of ABT-450/ritonavir+ABT-333+ribavirin achieved SVR12 in more than 90% of treatment-naïve HCV genotype-1-infected subjects and 47% of previous non-responders,” in Proceedings of the 47th Annual Meeting of the European Association for the Study of the Liver, Barcelona, Spain, April 2012, Abstract 1399.