About this Journal Submit a Manuscript Table of Contents
Advances in Virology
Volume 2012 (2012), Article ID 384069, 6 pages
http://dx.doi.org/10.1155/2012/384069
Review Article

Features of Human Herpesvirus-6A and -6B Entry

1Division of Clinical Virology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
2Laboratory of Virology and Vaccinology, Division of Biomedical Research, National Institute of Biomedical Innovation, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan

Received 1 August 2012; Accepted 25 September 2012

Academic Editor: Anthony V. Nicola

Copyright © 2012 Takahiro Maeki and Yasuko Mori. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Connolly, J. O. Jackson, T. S. Jardetzky, and R. Longnecker, “Fusing structure and function: a structural view of the herpesvirus entry machinery,” Nature Reviews Microbiology, vol. 9, no. 5, pp. 369–381, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Z. Salahuddin, D. V. Ablashi, and P. D. Markham, “Isolation of a new virus, HBLV, in patients with lymphoproliferative disorders,” Science, vol. 234, no. 4776, pp. 596–601, 1986. View at Scopus
  3. D. V. Ablashi, N. Balachandran, S. F. Josephs et al., “Genomic polymorphism, growth properties, and immunologic variations in human herpesvirus-6 isolates,” Virology, vol. 184, no. 2, pp. 545–552, 1991. View at Publisher · View at Google Scholar · View at Scopus
  4. J. T. Aubin, H. Collandre, D. Candotti et al., “Several groups among human herpesvirus 6 strains can be distinguished by Southern blotting and polymerase chain reaction,” Journal of Clinical Microbiology, vol. 29, no. 2, pp. 367–372, 1991. View at Scopus
  5. B. Chandran, S. Tirawatnapong, B. Pfeiffer, and D. V. Ablashi, “Antigenic relationships among human herpesvirus-6 isolates,” Journal of Medical Virology, vol. 37, no. 4, pp. 247–254, 1992. View at Scopus
  6. Y. Isegawa, T. Mukai, K. Nakano et al., “Comparison of the complete DNA sequences of human herpesvirus 6 variants A and B,” Journal of Virology, vol. 73, no. 10, pp. 8053–8063, 1999. View at Scopus
  7. U. A. Gompels, J. Nicholas, G. Lawrence et al., “The DNA sequence of human herpesvirus-6: structure, coding content, and genome evolution,” Virology, vol. 209, no. 1, pp. 29–51, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Dominguez, T. R. Dambaugh, F. R. Stamey, S. Dewhurst, N. Inoue, and P. E. Pellett, “Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A,” Journal of Virology, vol. 73, no. 10, pp. 8040–8052, 1999. View at Scopus
  9. K. Yamanishi, T. Okuno, K. Shiraki et al., “Identification of human herpesvirus-6 as a causal agent for exanthem subitum,” Lancet, vol. 1, no. 8594, pp. 1065–1067, 1988. View at Scopus
  10. M. Portolani, M. Pecorari, M. G. Tamassia, W. Gennari, F. Beretti, and G. Guaraldi, “Case of fatal encephalitis by HHV-6 variant A,” Journal of Medical Virology, vol. 65, no. 1, pp. 133–137, 2001.
  11. L. Potenza, M. Luppi, P. Barozzi et al., “HHV-6A in syncytial giant-cell hepatitis,” New England Journal of Medicine, vol. 359, no. 6, pp. 593–602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Chi, B. Gu, and C. Zhang, “Human herpesvirus 6 latent infection in patients with glioma,” Journal of Infectious Diseases, vol. 206, no. 9, pp. 1394–1398, 2012.
  13. N. Akhyani, R. Berti, M. B. Brennan et al., “Tissue distribution and variant characterization of human herpesvirus (HHV)-6: increased prevalence of HHV-6A in patients with multiple sclerosis,” Journal of Infectious Diseases, vol. 182, no. 5, pp. 1321–1325, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Santoro, P. E. Kennedy, G. Locatelli, M. S. Malnati, E. A. Berger, and P. Lusso, “CD46 is a cellular receptor for human herpesvirus 6,” Cell, vol. 99, no. 7, pp. 817–827, 1999. View at Scopus
  15. P. Akkapaiboon, Y. Mori, T. Sadaoka, S. Yonemoto, and K. Yamanishi, “Intracellular processing of human herpesvirus 6 glycoproteins Q1 and Q2 into tetrameric complexes expressed on the viral envelope,” Journal of Virology, vol. 78, no. 15, pp. 7969–7983, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Mori, “Recent topics related to human herpesvirus 6 cell tropism,” Cellular Microbiology, vol. 11, no. 7, pp. 1001–1006, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Tang, M. Hayashi, T. Maeki, K. Yamanishi, and Y. Mori, “Human herpesvirus 6 glycoprotein complex formation is required for folding and trafficking of the gH/gL/gQ1/gQ2 complex and its cellular receptor binding,” Journal of Virology, vol. 85, no. 21, pp. 11121–11130, 2011.
  18. Y. Mori, X. Yang, P. Akkapaiboon, T. Okuno, and K. Yamanishi, “Human herpesvirus 6 variant A glycoprotein H-glycoprotein L-glycoprotein Q complex associates with human CD46,” Journal of Virology, vol. 77, no. 8, pp. 4992–4999, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Mori, P. Akkapaiboon, S. Yonemoto et al., “Discovery of a second form of tripartite complex containing gH-gL of human herpesvirus 6 and observations on CD46,” Journal of Virology, vol. 78, no. 9, pp. 4609–4616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Santoro, H. L. Greenstone, A. Insinga et al., “Interaction of glycoprotein H of human herpesvirus 6 with the cellular receptor CD46,” Journal of Biological Chemistry, vol. 278, no. 28, pp. 25964–25969, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Seya, A. Hirano, M. Matsumoto, M. Nomura, and S. Ueda, “Human membrane cofactor protein (MCP, CD46): multiple isoforms and functions,” International Journal of Biochemistry and Cell Biology, vol. 31, no. 11, pp. 1255–1260, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Thulke, A. Radonić, A. Nitsche, and W. Siegert, “Quantitative expression analysis of HHV-6 cell receptor CD46 on cells of human cord blood, peripheral blood and G-CSF mobilised leukapheresis cells,” Virology Journal, vol. 3, article 77, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Cardone, G. Le Friec, and C. Kemper, “CD46 in innate and adaptive immunity: an update,” Clinical and Experimental Immunology, vol. 164, no. 3, pp. 301–311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. B. D. Persson, N. B. Schmitz, C. Santiago et al., “Structure of the extracellular portion of CD46 provides insights into its interactions with complement proteins and pathogens,” PLoS Pathogens, vol. 6, no. 9, Article ID e01122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. E. Joubert, G. Meiffren, I. P. Grégoire et al., “Autophagy induction by the pathogen receptor CD46,” Cell Host and Microbe, vol. 6, no. 4, pp. 354–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Mori, T. Seya, H. L. Huang, P. Akkapaiboon, P. Dhepakson, and K. Yamanishi, “Human herpesvirus 6 variant A but not variant B induces fusion from without in a variety of human cells through a human herpesvirus 6 entry receptor, CD46,” Journal of Virology, vol. 76, no. 13, pp. 6750–6761, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. H. L. Greenstone, F. Santoro, P. Lusso, and E. A. Berger, “Human herpesvirus 6 and measles virus employ distinct CD46 domains for receptor function,” Journal of Biological Chemistry, vol. 277, no. 42, pp. 39112–39118, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Tang, A. Kawabata, M. Yoshida et al., “Human herpesvirus 6 encoded glycoprotein Q1 gene is essential for virus growth,” Virology, vol. 407, no. 2, pp. 360–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. G. Revello and G. Gerna, “Human cytomegalovirus tropism for endothelial/epithelial cells: scientific background and clinical implications,” Reviews in Medical Virology, vol. 20, no. 3, pp. 136–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. L. M. Hutt-Fletcher, “Epstein-Barr virus entry,” Journal of Virology, vol. 81, no. 15, pp. 7825–7832, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Wang and T. Shenk, “Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18153–18158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. M. Pedersen, B. Øster, B. Bundgaard, and P. Höllsberg, “Induction of cell-cell fusion from without by human herpesvirus 6B,” Journal of Virology, vol. 80, no. 19, pp. 9916–9920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. M. Pedersen and P. Höllsberg, “Complexities in human herpesvirus-6A and -6B binding to host cells,” Virology, vol. 356, no. 1-2, pp. 1–3, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kawabata, H. Oyaizu, T. Maeki, H. Tang, K. Yamanishi, and Y. Mori, “Analysis of a neutralizing antibody for human herpesvirus 6B reveals a role for glycoprotein Q1 in viral entry,” Journal of Virology, vol. 85, no. 24, pp. 12962–12971, 2011.
  35. M. Cirone, C. Zompetta, A. Angeloni et al., “Infection by human herpesvirus 6 (HHV-6) of human lymphoid T cells occurs through an endocytic pathway,” AIDS Research and Human Retroviruses, vol. 8, no. 12, pp. 2031–2037, 1992. View at Scopus
  36. M. R. Torrisi, M. Gentile, G. Cardinali et al., “Intracellular transport and maturation pathway of human herpesvirus 6,” Virology, vol. 257, no. 2, pp. 460–471, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Ahlqvist, D. Donati, E. Martinelli et al., “Complete replication cycle and acquisition of tegument in nucleus of human herpesvirus 6A in astrocytes and in T-cells,” Journal of Medical Virology, vol. 78, no. 12, pp. 1542–1553, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Roffman, J. P. Albert, J. P. Goff, and N. Frenkel, “Putative site for the acquisition of human herpesvirus 6 virion tegument,” Journal of Virology, vol. 64, no. 12, pp. 6308–6313, 1990. View at Scopus
  39. M. Cirone, G. Campadelli-Fiume, L. Foa-Tomasi, M. R. Torrisi, and A. Faggioni, “Human herpesvirus 6 envelope glycoproteins B and H-L complex are undetectable on the plasma membrane of infected lymphocytes,” AIDS Research and Human Retroviruses, vol. 10, no. 2, pp. 175–179, 1994. View at Scopus
  40. P. Biberfeld, B. Kramarsky, S. Z. Salahuddin, and R. C. Gallo, “Ultrastructural characterization of a new human B lymphotropic DNA virus (human herpesvirus 6) isolated from patients with lymphoproliferative disease,” Journal of the National Cancer Institute, vol. 79, no. 5, pp. 933–941, 1987. View at Scopus
  41. G. Cardinali, M. Gentile, M. Cirone et al., “Viral glycoproteins accumulate in newly formed annulate lamellae following infection of lymphoid cells by human herpesvirus 6,” Journal of Virology, vol. 72, no. 12, pp. 9738–9746, 1998. View at Scopus
  42. Y. Mori, M. Koike, E. Moriishi et al., “Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway,” Traffic, vol. 9, no. 10, pp. 1728–1742, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. L. De Bolle, L. Naesens, and E. De Clercq, “Update on human herpesvirus 6 biology, clinical features, and therapy,” Clinical Microbiology Reviews, vol. 18, no. 1, pp. 217–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Nii, M. Yoshida, F. Uno, T. Kurata, K. Ikuta, and K. Yamanishi, “Replication of human herpesvirus 6 (HHV-6): morphological aspects,” Advances in Experimental Medicine and Biology, vol. 278, pp. 19–28, 1990. View at Scopus
  45. H. Huang, Y. Li, T. Sadaoka et al., “Human herpesvirus 6 envelope cholesterol is required for virus entry,” Journal of General Virology, vol. 87, no. 2, pp. 277–285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Tang, A. Kawabata, M. Takemoto, K. Yamanishi, and Y. Mori, “Human herpesvirus-6 infection induces the reorganization of membrane microdomains in target cells, which are required for virus entry,” Virology, vol. 378, no. 2, pp. 265–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Kawabata, H. Tang, H. Huang, K. Yamanishi, and Y. Mori, “Y Human herpesvirus 6 envelope components enriched in lipid rafts: evidence for virion-associated lipid rafts,” Virology Journal, vol. 6, article 127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. P. G. Spear and R. Longnecker, “Herpesvirus entry: an update,” Journal of Virology, vol. 77, no. 19, pp. 10179–10185, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Takeda, T. Okuno, Y. Isegawa, and K. Yamanishi, “Identification of a variant A-specific neutralizing epitope on glycoprotein B (gB) of human herpesvirus-6 (HHV-6),” Virology, vol. 222, no. 1, pp. 176–183, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Takeda, M. Haque, T. Sunagawa, T. Okuno, Y. Isegawa, and K. Yamanishi, “Identification of a variant B-specific neutralizing epitope on glycoprotein H of human herpesvirus-6,” Journal of General Virology, vol. 78, no. 9, pp. 2171–2178, 1997. View at Scopus
  51. R. J. Eisenberg, D. Atanasiu, T. M. Cairns, J. R. Gallagher, C. Krummenacher, and G. H. Cohen, “Herpes virus fusion and entry: a story with many characters,” Viruses, no. 5, pp. 800–832, 20124.
  52. D. Atanasiu, W. T. Saw, G. H. Cohen, and R. J. Eisenberg, “Cascade of events governing cell-cell fusion induced by herpes simplex virus glycoproteins gD, gH/gL, and gB,” Journal of Virology, vol. 84, no. 23, pp. 12292–12299, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Campadelli-Fiume, M. Amasio, E. Avitabile et al., “The multipartite system that mediates entry of herpes simplex virus into the cell,” Reviews in Medical Virology, vol. 17, no. 5, pp. 313–326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. T. K. Chowdary, T. M. Cairns, D. Atanasiu, G. H. Cohen, R. J. Eisenberg, and E. E. Heldwein, “Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL,” Nature Structural and Molecular Biology, vol. 17, no. 7, pp. 882–888, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. E. E. Heldwein, H. Lou, F. C. Bender, G. H. Cohen, R. J. Eisenberg, and S. C. Harrison, “Crystal structure of glycoprotein B from herpes simplex virus 1,” Science, vol. 313, no. 5784, pp. 217–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Matsuura, A. N. Kirschner, R. Longnecker, and T. S. Jardetzky, “Crystal structure of the Epstein-Barr virus (EBV) glycoprotein H/glycoprotein L (gH/gL) complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 52, pp. 22641–22646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. C. M. Borza and L. M. Hutt-Fletcher, “Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus,” Nature Medicine, vol. 8, no. 6, pp. 594–599, 2002. View at Publisher · View at Google Scholar · View at Scopus