About this Journal Submit a Manuscript Table of Contents
Advances in Virology
Volume 2012 (2012), Article ID 509296, 11 pages
http://dx.doi.org/10.1155/2012/509296
Review Article

Advances in Virus-Directed Therapeutics against Epstein-Barr Virus-Associated Malignancies

Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA

Received 26 July 2011; Accepted 24 October 2011

Academic Editor: Jay C. Brown

Copyright © 2012 Sajal K. Ghosh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. E. Straus, J. I. Cohen, G. Tosato, and J. Meier, “Epstein-Barr virus infections: biology, pathogenesis, and management,” Annals of Internal Medicine, vol. 118, no. 1, pp. 45–58, 1993. View at Scopus
  2. G. Henle, W. Henle, and V. Diehl, “Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 59, no. 1, pp. 94–101, 1968. View at Scopus
  3. D. T. Purtilo, “X-linked lymphoproliferative disease (XLP) as a model of Epstein-Barr virus-induced immunopathology,” Springer Seminars in Immunopathology, vol. 13, no. 2, pp. 181–197, 1991. View at Scopus
  4. M. Morra, D. Howie, M. S. Grande et al., “X-linked lymphoproliferative disease: a progressive immunodeficiency,” Annual Review of Immunology, vol. 19, pp. 657–682, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Liebowitz, “Nasopharyngeal carcinoma: the Epstein-Barr virus association,” Seminars in Oncology, vol. 21, no. 3, pp. 376–381, 1994. View at Scopus
  6. M. A. Epstein, B. G. Achong, and Y. M. Barr, “Virus particles in cultured lymphoblasts from Burkitt's lymphoma,” The Lancet, vol. 283, no. 7335, pp. 702–703, 1964. View at Scopus
  7. P. Hopwood and D. H. Crawford, “The role of EBV in post-transplant malignancies: a review,” Journal of Clinical Pathology, vol. 53, no. 4, pp. 248–254, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. N. J. Chao, G. J. Berry, R. Advani, S. J. Horning, L. M. Weiss, and K. G. Blume, “Epstein-Barr virus-associated lymphoproliferative disorder following autologous bone marrow transplantation for non-Hodgkin's lymphoma,” Transplantation, vol. 55, no. 6, pp. 1425–1428, 1993. View at Scopus
  9. M. Ho, R. Jaffe, G. Miller et al., “The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children,” Transplantation, vol. 45, no. 4, pp. 719–727, 1988. View at Scopus
  10. I. Penn, “Malignant lymphomas in organ transplant recipients,” Transplantation Proceedings, vol. 13, no. 1, pp. 736–738, 1981. View at Scopus
  11. L. M. Weiss, L. A. Movahed, R. A. Warnke, and J. Sklar, “Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin's disease,” The New England Journal of Medicine, vol. 320, no. 8, pp. 502–506, 1989. View at Scopus
  12. G. Ott, T. H. Kirchner, and H. K. Muller-Hermelink, “Monoclonal Epstein-Barr virus genomes but lack of EBV-related protein expression in different types of gastric carcinoma,” Histopathology, vol. 25, no. 4, pp. 323–329, 1994. View at Scopus
  13. S. T. Yuen, L. P. Chung, S. Y. Leung, I. S. C. Luk, S. Y. Chan, and J. Ho, “In situ detection of Epstein-Barr virus in gastric and colorectal adenocarcinomas,” American Journal of Surgical Pathology, vol. 18, no. 11, pp. 1158–1163, 1994. View at Scopus
  14. M. Bonnet, J. M. Guinebretiere, E. Kremmer et al., “Detection of Epstein-Barr virus in invasive breast cancers,” Journal of the National Cancer Institute, vol. 91, no. 16, pp. 1376–1381, 1999. View at Scopus
  15. H. Arbach, V. Viglasky, F. Lefeu et al., “Epstein-Barr virus (EBV) genome and expression in breast cancer tissue: effect of EBV infection of breast cancer cells on resistance to paclitaxel (taxol),” Journal of Virology, vol. 80, no. 2, pp. 845–853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. S. L. Glaser, J. L. Hsu, and M. L. Gulley, “Epstein-Barr Virus and breast cancer: state of the evidence for viral carcinogenesis,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 5, pp. 688–697, 2004. View at Scopus
  17. A. Diepstra, G. W. Van Imhoff, M. Schaapveld et al., “Latent Epstein-Barr virus infection of tumor cells in classical Hodgkin's lymphoma predicts adverse outcome in older adult patients,” Journal of Clinical Oncology, vol. 27, no. 23, pp. 3815–3821, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. A. M. Tsimberidou, M. J. Keating, C. E. Bueso-Ramos, and R. Kurzrock, “Epstein-Barr virus in patients with chronic lymphocytic leukemia: a pilot study,” Leukemia and Lymphoma, vol. 47, no. 5, pp. 827–836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Park, J. Lee, H. K. Young et al., “The impact of Epstein-Barr virus status on clinical outcome in diffuse large B-cell lymphoma,” Blood, vol. 110, no. 3, pp. 972–978, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Paydas, M. Ergin, S. Erdogan, and G. Seydaoglu, “Prognostic significance of EBV-LMP1 and VEGF-A expressions in non-Hodgkin's lymphomas,” Leukemia Research, vol. 32, no. 9, pp. 1424–1430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. P. S. Sasikala, K. Nirmala, S. Sundersingh, U. Mahji, and T. Rajkumar, “Frequency and distribution of Epstein-Barr virus infection and its association with P53 expression in a series of primary nodal non-Hodgkin lymphoma patients from South India,” International Journal of Laboratory Hematology, vol. 32, no. 1, pp. 56–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Carbone, E. Cesarman, M. Spina, A. Gloghini, and T. F. Schulz, “HIV-associated lymphomas and gamma-herpesviruses,” Blood, vol. 113, no. 6, pp. 1213–1224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Raab-Traub and K. Flynn, “The structure of the termini of the Epstein-Barr virus as a marker of clonal cellular proliferation,” Cell, vol. 47, no. 6, pp. 883–889, 1986. View at Scopus
  24. N. A. Brown, C. Liu, and C. R. Garcia, “Clonal origins of lymphoproliferative disease induced by Epstein-Barr virus,” Journal of Virology, vol. 58, no. 3, pp. 975–978, 1986. View at Scopus
  25. W. Hammerschmidt and B. Sugden, “Identification and characterization of oriLyt, a lytic origin of DNA replication of Epstein-Barr virus,” Cell, vol. 55, no. 3, pp. 427–433, 1988. View at Scopus
  26. A. Neri, F. Barriga, G. Inghirami et al., “Epstein-Barr virus infection precedes clonal expansion in Burkitt's and acquired immunodeficiency syndrome-associated lymphoma,” Blood, vol. 77, no. 5, pp. 1092–1095, 1991. View at Scopus
  27. G. Henle, W. Henle, and C. A. Horwitz, “Antibodies to Epstein Barr virus associated nuclear antigen in infectious mononucleosis,” Journal of Infectious Diseases, vol. 130, no. 3, pp. 231–239, 1974. View at Scopus
  28. G. Henle, W. Henle, P. Clifford et al., “Antibodies to Epstein-Barr virus in Burkitt's lymphoma and control groups,” Journal of the National Cancer Institute, vol. 43, no. 5, pp. 1147–1157, 1969. View at Scopus
  29. W. Henle and G. Henle, “Seroepidemiology of the virus,” in The Epstein-Barr Virus, M. Epstein and B. Achong, Eds., pp. 61–78, Springer, Berlin, 1979.
  30. A. B. Rickinson and D. J. Moss, “Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection,” Annual Review of Immunology, vol. 15, pp. 405–431, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. L. C. Tan, N. Gudgeon, N. E. Annels et al., “A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers,” Journal of Immunology, vol. 162, no. 3, pp. 1827–1835, 1999. View at Scopus
  32. B. Sugden and W. Mark, “Clonal transformation of adult human leukocytes by Epstein-Barr virus,” Journal of Virology, vol. 23, no. 3, pp. 503–508, 1977. View at Scopus
  33. J. I. Cohen, “Epstein-Barr virus and the immune system: hide and seek,” Journal of the American Medical Association, vol. 278, no. 6, pp. 510–513, 1997. View at Scopus
  34. W. T. Jackman, K. A. Mann, H. J. Hoffmann, and R. R. Spaete, “Expression of Epstein-Barr virus gp350 as a single chain glycoprotein for an EBV subunit vaccine,” Vaccine, vol. 17, no. 7-8, pp. 660–668, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. S. A. Thomson, S. R. Burrows, I. S. Misko, D. J. Moss, B. E. H. Coupar, and R. Khanna, “Targeting a polyepitope protein incorporating multiple class II- restricted vital epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design,” Journal of Virology, vol. 72, no. 3, pp. 2246–2252, 1998. View at Scopus
  36. A. B. Rickinson and E. Kieff, “Epstein-Barr virus,” in Fields Virology, B. N. Fields, D. M. Knipe, and P. M. Howley, Eds., Lippincott-Raven, Philadelphia, Pa, USA, 3rd edition, 1996.
  37. E. M. Sokal, K. Hoppenbrouwers, C. Vandermeulen et al., “Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults,” Journal of Infectious Diseases, vol. 196, no. 12, pp. 1749–1753, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Moutschen, P. Léonard, E. M. Sokal et al., “Phase I/II studies to evaluate safety and immunogenicity of a recombinant gp350 Epstein-Barr virus vaccine in healthy adults,” Vaccine, vol. 25, no. 24, pp. 4697–4705, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. B. Papadopoulos, M. Ladanyi, D. Emanuel et al., “Infusions of donor leukocytes to treat Epstein-Barr virus-associated lymphoproliferative disorders after allogeneic bone marrow transplantation,” The New England Journal of Medicine, vol. 330, no. 17, pp. 1185–1191, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. C. M. Rooney, C. A. Smith, C. Y. C. Ng et al., “Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients,” Blood, vol. 92, no. 5, pp. 1549–1555, 1998. View at Scopus
  41. R. Khanna, S. Bell, M. Sherritt et al., “Activation and adoptive transfer of Epstein-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10391–10396, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Chua, J. Huang, B. Zheng et al., “Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma,” International Journal of Cancer, vol. 94, no. 1, pp. 73–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. C. M. Bollard, L. Aguilar, K. C. Straathof et al., “Cytotoxic T lymphocyte therapy for epstein-barr virus+ Hodgkin's disease,” Journal of Experimental Medicine, vol. 200, no. 12, pp. 1623–1633, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. K. C. M. Straathof, C. M. Bollard, U. Popat et al., “Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes,” Blood, vol. 105, no. 5, pp. 1898–1904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Gustafsson, V. Levitsky, J. Z. Zou et al., “Epstein-Barr virus (EBV) load in bone marrow transplant recipients at risk to develop posttransplant lymphoproliferative disease: prophylactic infusion of EBV-specific cytotoxic T cells,” Blood, vol. 95, no. 3, pp. 807–814, 2000. View at Scopus
  46. H. E. Heslop, K. S. Slobod, M. A. Pule et al., “Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients,” Blood, vol. 115, no. 5, pp. 925–935, 2010. View at Publisher · View at Google Scholar
  47. R. J. Murray, M. G. Kurilla, J. M. Brooks et al., “Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV- positive malignancies,” Journal of Experimental Medicine, vol. 176, no. 1, pp. 157–168, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. C. U. Louis, K. Straath, C. M. Bollard et al., “Enhancing the in vivo expansion of adoptively transferred EBV- Specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients,” Blood, vol. 113, no. 11, pp. 2442–2450, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Merlo, R. Turrini, R. Dolcetti, P. Zanovello, and A. Rosato, “Immunotherapy for EBV-associated malignancies,” International Journal of Hematology, vol. 93, no. 3, pp. 281–293, 2011. View at Publisher · View at Google Scholar
  50. J. Chodosh, V. P. Holder, Y. J. Gan, A. Belgaumi, J. Sample, and J. W. Sixbey, “Eradication of latent Epstein-Barr virus by hydroxyurea alters the growth-transformed cell phenotype,” Journal of Infectious Diseases, vol. 177, no. 5, pp. 1194–1201, 1998. View at Scopus
  51. K. S. Slobod, G. H. Taylor, J. T. Sandlund, P. Furth, K. J. Helton, and J. W. Sixbey, “Epstein-Barr virus-targeted therapy for AIDS-related primary lymphoma of the central nervous system,” The Lancet, vol. 356, no. 9240, pp. 1493–1494, 2000. View at Scopus
  52. J. L. Kenney, M. E. Guinness, T. Curiel, and J. Lacy, “Antisense to the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and Bcl-2 expression and promotes apoptosis in EBV-immortalized B cells,” Blood, vol. 92, no. 5, pp. 1721–1727, 1998. View at Scopus
  53. H. Hirai, E. Satoh, M. Osawa et al., “Use of EBV-based vector/HVJ-liposome complex vector for targeted gene therapy of EBV-associated neoplasms,” Biochemical and Biophysical Research Communications, vol. 241, no. 1, pp. 112–118, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Kenney, J. I. Q. Ge, E. M. Westphal, and J. Olsen, “Gene therapy strategies for treating Epstein-Barr virus-associated lymphomas: comparison of two different Epstein-Barr virus-based vectors,” Human Gene Therapy, vol. 9, no. 8, pp. 1131–1141, 1998. View at Scopus
  55. F. L. Moolten, “Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy,” Cancer Research, vol. 46, no. 10, pp. 5276–5281, 1986. View at Scopus
  56. M. I. Gutiérrez, J. G. Judde, I. T. Magrath, and K. G. Bhatia, “Switching viral latency to viral lysis: a novel therapeutic approach for Epstein-Barr virus-associated neoplasia,” Cancer Research, vol. 56, no. 5, pp. 969–972, 1996. View at Scopus
  57. E. M. Westphal, A. Mauser, J. Swenson, M. G. Davis, C. L. Talarico, and S. C. Kenney, “Induction of lytic Epstein-Barr virus (EBV) infection in EBV-associated malignancies using adenovirus vectors in vitro and in vivo,” Cancer Research, vol. 59, no. 7, pp. 1485–1491, 1999. View at Scopus
  58. W. H. Feng, E. Westphal, A. Mauser et al., “Use of adenovirus vectors expressing Epstein-Barr virus (EBV) immediate-early protein BZLF1 or BRLF1 to treat EBV-positive tumors,” Journal of Virology, vol. 76, no. 21, pp. 10951–10959, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. B. F. Israel and S. C. Kenney, “Virally targeted therapies for EBV-associated malignancies,” Oncogene, vol. 22, no. 33, pp. 5122–5130, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. S. A. Ben-Sasson and G. Klein, “Activation of the Epstein-Barr virus genome by 5-aza-cytidine in latently infected human lymphoid lines,” International Journal of Cancer, vol. 28, no. 2, pp. 131–135, 1981. View at Scopus
  61. J. Hudewentz, G. W. Bornkamm, and H. Zur Hausen, “Effect of the diterpene ester TPA on Epstein-Barr virus antigen- and DNA synthesis in producer and nonproducer cell lines,” Virology, vol. 100, no. 1, pp. 175–178, 1980. View at Scopus
  62. J. Luka, B. Kallin, and G. Klein, “Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate,” Virology, vol. 94, no. 1, pp. 228–231, 1979. View at Scopus
  63. E. Anisimova, K. Prachova, J. Roubal, and V. Vonka, “Effects of n-butyrate and phorbol ester (TPA) on induction of Epstein-Barr virus antigens and cell differentiation,” Archives of Virology, vol. 81, no. 3-4, pp. 223–237, 1984. View at Scopus
  64. A. K. Saemundsen, B. Kallin, and G. Klein, “Effect of n-butyrate on cellular and viral DNA synthesis in cells latently infected with Epstein-Barr virus,” Virology, vol. 107, no. 2, pp. 557–561, 1980. View at Scopus
  65. P. J. Farrell, D. T. Rowe, C. M. Rooney, and T. Kouzarides, “Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos,” The EMBO Journal, vol. 8, no. 1, pp. 127–132, 1989. View at Scopus
  66. Q. Tao and K. D. Robertson, “Stealth technology: how Epstein-Barr virus utilizes DNA methylation to cloak itself from immune detection,” Clinical Immunology, vol. 109, no. 1, pp. 53–63, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. J. H. Park and D. V. Faller, “Epstein-Barr virus latent membrane protein-1 induction by histone deacetylase inhibitors mediates induction of intercellular adhesion molecule-1 expression and homotypic aggregation,” Virology, vol. 303, no. 2, pp. 345–363, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Sealy and R. Chalkley, “The effect of sodium butyrate on histone modification,” Cell, vol. 14, no. 1, pp. 115–121, 1978. View at Scopus
  69. S. Sarkar, A. L. Abujamra, J. E. Loew, L. W. Forman, S. P. Perrine, and D. V. Faller, “Histone deacetylase inhibitors reverse CpG methylation by regulating DNMT1 through ERK signaling,” Anticancer Research, vol. 31, no. 9, pp. 2723–2732, 2011.
  70. S. J. Mentzer, J. Fingeroth, J. J. Reilly, S. P. Perrine, and D. V. Faller, “Arginine butyrate-induced susceptibility to ganciclovir in an Epstein-Barr-virus-associated lymphoma,” Blood Cells, Molecules and Diseases, vol. 24, no. 2, pp. 114–123, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. E. M. Westphal, W. Blackstock, W. Feng, B. Israel, and S. C. Kenney, “Activation of lytic Epstein-Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies,” Cancer Research, vol. 60, no. 20, pp. 5781–5788, 2000. View at Scopus
  72. D. V. Faller, S. J. Mentzer, and S. P. Perrine, “Induction of the Epstein-Barr virus thymidine kinase gene with concomitant nucleoside antivirals as a therapeutic strategy for Epstein-Barr virus-associated malignancies,” Current Opinion in Oncology, vol. 13, no. 5, pp. 360–367, 2001. View at Publisher · View at Google Scholar · View at Scopus
  73. D. V. Faller, O. Hermine, and T. Small, “Phase I/II trial of arginine butyrate to induce viral TK gene expression in Epstein-Barr virus (EBV)-associated lymphoma,” Blood (ASH Annual Meeting Abstracts), vol. 96, abstract 577, 2000.
  74. S. P. Perrine, O. Hermine, T. Small et al., “A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies,” Blood, vol. 109, no. 6, pp. 2571–2578, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. S. M. Moore, J. S. Cannon, Y. C. Tanhehco, F. M. Hamzeh, and R. F. Ambinder, “Induction of Epstein-Barr virus kinases to sensitize tumor cells to nucleoside analogues,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 7, pp. 2082–2091, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. S. J. Mentzer, S. P. Perrine, and D. V. Faller, “Epstein-Barr virus post-transplant lymphoproliferative disease and virus-specific therapy: pharmacological re-activation of viral target genes with arginine butyrate,” Transplant Infectious Disease, vol. 3, no. 3, pp. 177–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. W. H. Feng and S. C. Kenney, “Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression,” Cancer Research, vol. 66, no. 17, pp. 8762–8769, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. S. K. Ghosh, L. W. Forman, I. Akinsheye, S. P. Perrine, and D. V. Faller, “Short, discontinuous exposure to butyrate effectively sensitizes latently EBV-infected lymphoma cells to nucleoside analogue antiviral agents,” Blood Cells, Molecules, and Diseases, vol. 38, no. 1, pp. 57–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Roychowdhury, R. Peng, R. A. Baiocchi et al., “Experimental treatment of Epstein-Barr virus-associated primary central nervous system lymphoma,” Cancer Research, vol. 63, no. 5, pp. 965–971, 2003. View at Scopus
  80. M. Daibata, K. Bandobashi, M. Kuroda, S. Imai, I. Miyoshi, and H. Taguchi, “Induction of lytic Epstein-Barr virus (EBV) infection by synergistic action of rituximab and dexamethasone renders EBV-positive lymphoma cells more susceptible to ganciclovir cytotoxicity in vitro and in vivo,” Journal of Virology, vol. 79, no. 9, pp. 5875–5879, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. D. X. Fu, Y. Tanhehco, J. Chen et al., “Bortezomib-induced enzyme-targeted radiation therapy in herpesvirus-associated tumors,” Nature Medicine, vol. 14, no. 10, pp. 1118–1122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. W. H. Feng, B. Israel, N. Raab-Traub, P. Busson, and S. C. Kenney, “Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors,” Cancer Research, vol. 62, no. 6, pp. 1920–1926, 2002. View at Scopus
  83. W. H. Feng, G. Hong, H. J. Delecluse, and S. C. Kenney, “Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas,” Journal of Virology, vol. 78, no. 4, pp. 1893–1902, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. D. X. Fu, Y. C. Tanhehco, J. Chen et al., “Virus-associated tumor imaging by induction of viral gene expression,” Clinical Cancer Research, vol. 13, no. 5, pp. 1453–1458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. D. V. Faller, S. Ghosh, T. Feldman, et al., “Short-term exposure to arginine butyrate, in combination with ganciclovir, is as effective as continuous exposure for virus-targeted therapy of EBV-positive lymphomas,” Blood (ASH Annual Meeting Abstracts), vol. 114, abstract 4754, 2009.
  86. W. S. Xu, R. B. Parmigiani, and P. A. Marks, “Histone deacetylase inhibitors: molecular mechanisms of action,” Oncogene, vol. 26, no. 37, pp. 5541–5552, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Mercurio, S. Minucci, and P. G. Pelicci, “Histone deacetylases and epigenetic therapies of hematological malignancies,” Pharmacological Research, vol. 62, no. 1, pp. 18–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. J. Ye, L. Gradoville, D. Daigle, and G. Miller, “De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi's sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists,” Journal of Virology, vol. 81, no. 17, pp. 9279–9291, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. D. V. Faller, S. Ghosh, S. P. Perrine, R. M. Williams, and R. J. Berenson, “Histone deacetylase inhibitors: potent inducers of tumor latent EBV thymidine kinase induction,” Blood (ASH Annual Meeting Abstracts), vol. 118, abstract 1831, 2011.
  90. S. K. Ghosh, S. P. Perrine, R. M. Williams, and D. V. Faller, “Histone deacetylase inhibitors are potent inducers of gene expression in latent EBV and sensitize lymphoma cells to nucleoside anti-viral agents,” Blood, vol. 119, no. 4, pp. 1008–1017, 2012. View at Publisher · View at Google Scholar