About this Journal Submit a Manuscript Table of Contents
Advances in Virology
Volume 2012 (2012), Article ID 674360, 8 pages
http://dx.doi.org/10.1155/2012/674360
Research Article

Elevated VEGF Levels in Pulmonary Edema Fluid and PBMCs from Patients with Acute Hantavirus Pulmonary Syndrome

1Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
2Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr. Albuquerque, NM 87108, USA

Received 23 May 2012; Accepted 11 July 2012

Academic Editor: Amiya K. Banerjee

Copyright © 2012 Irina Gavrilovskaya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Koster, K. Foucar, B. Hjelle et al., “Rapid presumptive diagnosis of hantavirus cardiopulmonary syndrome by peripheral blood smear review,” American Journal of Clinical Pathology, vol. 116, no. 5, pp. 665–672, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Koster and E. R. Mackow, “Pathogenesis of the hantavirus pulmonary syndrome,” Future Virology, vol. 7, no. 1, pp. 41–51, 2012. View at Publisher · View at Google Scholar
  3. S. T. Nichol, C. F. Spiropoulou, S. Morzunov et al., “Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness,” Science, vol. 262, no. 5135, pp. 914–917, 1993. View at Scopus
  4. C. Schmaljohn and B. Hjelle, “Hantaviruses: a global disease problem,” Emerging Infectious Diseases, vol. 3, no. 2, pp. 95–104, 1997. View at Scopus
  5. S. R. Zaki, P. W. Greer, L. M. Coffield et al., “Hantavirus pulmonary syndrome: pathogenesis of an emerging infectious disease,” American Journal of Pathology, vol. 146, no. 3, pp. 552–579, 1995. View at Scopus
  6. J. S. Duchin, F. T. Koster, C. J. Peters et al., “Hantavirus pulmonary syndrome: a clinical description of 17 patients with a newly recognized disease,” New England Journal of Medicine, vol. 330, no. 14, pp. 949–955, 1994. View at Publisher · View at Google Scholar · View at Scopus
  7. K. B. Nolte, R. M. Feddersen, K. Foucar et al., “Hantavirus pulmonary syndrome in the United States: a pathological description of a disease caused by a new agent,” Human Pathology, vol. 26, no. 1, pp. 110–120, 1995. View at Scopus
  8. M. Kanerva, J. Mustonen, and A. Vaheri, “Pathogenesis of puumala and other hantavirus infections,” Reviews in Medical Virology, vol. 8, no. 2, pp. 67–86, 1998. View at Publisher · View at Google Scholar
  9. E. D. Kilpatrick, M. Terajima, F. T. Koster, M. D. Catalina, J. Cruz, and F. A. Ennis, “Role of specific CD8+ T cells in the severity of a fulminant zoonotic viral hemorrhagic fever, hantavirus pulmonary syndrome,” Journal of Immunology, vol. 172, no. 5, pp. 3297–3304, 2004. View at Scopus
  10. T. Krakauer, J. W. Leduc, and H. Krakauer, “Serum levels of tumor necrosis factor-α, interleukin-1, and interleukin-6 in hemorrhagic fever with renal syndrome,” Viral Immunology, vol. 8, no. 2, pp. 75–79, 1995. View at Scopus
  11. E. R. Mackow and I. N. Gavrilovskaya, “Hantavirus regulation of endothelial cell functions,” Thrombosis and Haemostasis, vol. 102, no. 6, pp. 1030–1041, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Maes, J. Clement, P. H. P. Groeneveld, P. Colson, T. W. J. Huizinga, and M. Van Ranst, “Tumor necrosis factor-α genetic predisposing factors can influence clinical severity in nephropathia epidemica,” Viral Immunology, vol. 19, no. 3, pp. 558–564, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Mori, A. L. Rothman, I. Kurane et al., “High levels of cytokine-producing cells in the lung tissues of patients with fatal hantavirus pulmonary syndrome,” Journal of Infectious Diseases, vol. 179, no. 2, pp. 295–302, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Sundstrom, L. K. McMullan, C. F. Spiropoulou et al., “Hantavirus infection induces the expression of RANTES and IP-10 without causing increased permeability in human lung microvascular endothelial cells,” Journal of Virology, vol. 75, no. 13, pp. 6070–6085, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Temonen, J. Mustonen, H. Helin, A. Pasternack, A. Vaheri, and H. Holthöfer, “Cytokines, adhesion molecules, and cellular infiltration in nephropathia epidemica kidneys: an immunohistochemical study,” Clinical Immunology and Immunopathology, vol. 78, no. 1, pp. 47–55, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. S. F. Khaiboullina, D. M. Netski, P. Krumpe, and S. C. S. Jeor, “Effects of tumor necrosis factor alpha on Sin Nombre virus infection in vitro,” Journal of Virology, vol. 74, no. 24, pp. 11966–11971, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. I. N. Gavrilovskaya, E. E. Gorbunova, and E. R. Mackow, “Pathogenic hantaviruses direct the adherence of quiescent platelets to infected endothelial cells,” Journal of Virology, vol. 84, no. 9, pp. 4832–4839, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. I. N. Gavrilovskaya, E. E. Gorbunova, N. A. Mackow, and E. R. Mackow, “Hantaviruses direct endothelial cell permeability by sensitizing cells to the vascular permeability factor VEGF, while angiopoietin 1 and sphingosine 1-phosphate inhibit hantavirus-directed permeability,” Journal of Virology, vol. 82, no. 12, pp. 5797–5806, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. I. N. Gavrilovskaya, T. Peresleni, E. Geimonen, and E. R. Mackow, “Pathogenic hantaviruses selectively inhibit β3 integrin directed endothelial cell migration,” Archives of Virology, vol. 147, no. 10, pp. 1913–1931, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Raymond, E. Gorbunova, I. N. Gavrilovskaya, and E. R. Mackow, “Pathogenic hantaviruses bind plexin-semaphorin-integrin domains present at the apex of inactive, bent αvβ3 integrin conformers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 4, pp. 1163–1168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. D. Robinson, L. E. Reynolds, L. Wyder, D. J. Hicklin, and K. M. Hodivala-Dilke, “β3-integrin regulates vascular endothelial growth factor-A-dependent permeability,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 11, pp. 2108–2114, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. B. Chang, M. Crowley, M. Campen, and F. Koster, “Hantavirus cardiopulmonary syndrome,” Seminars in Respiratory and Critical Care Medicine, vol. 28, no. 2, pp. 193–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Geimonen, S. Neff, T. Raymond, S. S. Kocer, I. N. Gavrilovskaya, and E. R. Mackow, “Pathogenic and nonpathogenic hantaviruses differentially regulate endothelial cell responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13837–13842, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Gorbunova, I. N. Gavrilovskaya, and E. R. Mackow, “Pathogenic hantaviruses Andes virus and Hantaan virus induce adherens junction disassembly by directing vascular endothelial cadherin internalization in human endothelial cell,” Journal of Virology, vol. 84, no. 14, pp. 7405–7411, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. F. Khaiboullina, A. A. Rizvanov, E. Otteson, A. Miyazato, J. Maciejewski, and S. S. Jeor, “Regulation of cellular gene expression in endothelial cells by Sin Nombre and Prospect Hill viruses,” Viral Immunology, vol. 17, no. 2, pp. 234–251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Yanagihara and D. J. Silverman, “Experimental infection of human vascular endothelial cells by pathogenic and nonpathogenic hantaviruses,” Archives of Virology, vol. 111, no. 3-4, pp. 281–286, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. K. M. Hodivala-Dilke, K. P. McHugh, D. A. Tsakiris et al., “β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival,” Journal of Clinical Investigation, vol. 103, no. 2, pp. 229–238, 1999. View at Scopus
  28. A. R. Reynolds, L. E. Reynolds, T. E. Nagel et al., “Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin-deficient mice,” Cancer Research, vol. 64, no. 23, pp. 8643–8650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. I. N. Gavrilovskaya, M. Shepley, R. Shaw, M. H. Ginsberg, and E. R. Mackow, “β3 integrins mediate the cellular entry of hantaviruses that cause respiratory failure,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 12, pp. 7074–7079, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. E. E. Gorbunova, I. N. Gavrilovskaya, T. Pepini, and E. R. Mackow, “VEGFR2 and Src kinase inhibitors suppress Andes virus-induced endothelial cell permeability,” Journal of Virology, vol. 85, no. 5, pp. 2296–2303, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Pepini, E. E. Gorbunova, I. N. Gavrilovskaya, J. E. Mackow, and E. R. Mackow, “Andes virus regulation of cellular microRNAs contributes to hantavirus-induced endothelial cell permeability,” Journal of Virology, vol. 84, no. 22, pp. 11929–11936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. H. F. Dvorak, L. F. Brown, M. Detmar, and A. M. Dvorak, “Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis,” American Journal of Pathology, vol. 146, no. 5, pp. 1029–1039, 1995. View at Scopus
  33. M. Hanaoka, Y. Droma, A. Naramoto, T. Honda, T. Kobayashi, and K. Kubo, “Vascular endothelial growth factor in patients with high-altitude pulmonary edema,” Journal of Applied Physiology, vol. 94, no. 5, pp. 1836–1840, 2003. View at Scopus
  34. M. M. Berger, C. Hesse, C. Dehnert et al., “Hypoxia impairs systemic endothelial function in individuals prone to high-altitude pulmonary edema,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 6, pp. 763–767, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Dehler, E. Zessin, P. Bärtsch, and H. Mairbäurl, “Hypoxia causes permeability oedema in the constant-pressure perfused rat lung,” European Respiratory Journal, vol. 27, no. 3, pp. 600–606, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. H. F. Dvorak, “Vascular permeability to plasma, plasma proteins, and cells: an update,” Current Opinion in Hematology, vol. 17, no. 3, pp. 225–229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. K. R. Stenmark, K. A. Fagan, and M. G. Frid, “Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms,” Circulation Research, vol. 99, no. 7, pp. 675–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Tang, L. Wang, J. Esko et al., “Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis,” Cancer Cell, vol. 6, no. 5, pp. 485–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. R. J. Kaner and R. G. Crystal, “Pathogenesis of high altitude pulmonary edema: does alveolar epithelial lining fluid vascular endothelial growth factor exacerbate capillary leak?” High Altitude Medicine and Biology, vol. 5, no. 4, pp. 399–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. R. J. Kaner, J. V. Ladetto, R. Singh, N. Fukuda, M. A. Matthay, and R. G. Crystal, “Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema,” American Journal of Respiratory Cell and Molecular Biology, vol. 22, no. 6, pp. 657–664, 2000. View at Scopus
  41. B. Hjelle, S. Jenison, N. Torrez-Martinez et al., “Rapid and specific detection of Sin Nombre virus antibodies in patients with hantavirus pulmonary syndrome by a strip immunoblot assay suitable for field diagnosis,” Journal of Clinical Microbiology, vol. 35, no. 3, pp. 600–608, 1997. View at Scopus
  42. G. W. Hallin, S. Q. Simpson, R. E. Crowell et al., “Cardiopulmonary manifestations of hantavirus pulmonary syndrome,” Critical Care Medicine, vol. 24, no. 2, pp. 252–258, 1996. View at Publisher · View at Google Scholar · View at Scopus
  43. M. R. Crowley, R. W. Katz, R. Kessler et al., “Successful treatment of adults with severe Hantavirus pulmonary syndrome with extracorporeal membrane oxygenation,” Critical Care Medicine, vol. 26, no. 2, pp. 409–414, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. H. F. Dvorak, T. M. Sioussat, L. F. Brown et al., “Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels,” Journal of Experimental Medicine, vol. 174, no. 5, pp. 1275–1278, 1991. View at Scopus
  45. E. A. Bustamante, H. Levy, and S. Q. Simpson, “Pleural fluid characteristics in hantavirus pulmonary syndrome,” Chest, vol. 112, no. 4, pp. 1133–1136, 1997. View at Scopus
  46. H. F. Dvorak, “Discovery of vascular permeability factor (VPF),” Experimental Cell Research, vol. 312, no. 5, pp. 522–526, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. I. Pham, T. Uchida, C. Planes et al., “Hypoxia upregulates VEGF expression in alveolar epithelial cells in vitro and in vivo,” American Journal of Physiology-Lung Cellular and Molecular Physiology, vol. 283, no. 5, pp. L1133–L1142, 2002. View at Scopus
  48. E. Dejana, F. Orsenigo, and M. G. Lampugnani, “The role of adherens junctions and VE-cadherin in the control of vascular permeability,” Journal of Cell Science, vol. 121, no. 13, pp. 2115–2122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Gavard and J. S. Gutkind, “VEGF Controls endothelial-cell permeability promoting β-arrestin-dependent Endocytosis VE-cadherin,” Nature Cell Biology, vol. 8, no. 11, pp. 1223–1234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. M. G. Lampugnani and E. Dejana, “The control of endothelial cell functions by adherens junctions,” Novartis Foundation Symposium, vol. 283, pp. 4–13, 2007. View at Scopus
  51. M. G. Lampugnani and E. Dejana, “Adherens junctions in endothelial cells regulate vessel maintenance and angiogenesis,” Thrombosis Research, vol. 120, supplement 2, pp. S1–S6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. R. J. Kaner and R. G. Crystal, “Compartmentalization of vascular endothelial growth factor to the epithelial surface of the human lung,” Molecular Medicine, vol. 7, no. 4, pp. 240–246, 2001. View at Scopus
  53. S. R. Hopkins, J. Garg, D. S. Bolar, J. Balouch, and D. L. Levin, “Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema,” American Journal of Respiratory and Critical Care Medicine, vol. 171, no. 1, pp. 83–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Thurston, J. S. Rudge, E. Ioffe et al., “Angiopoietin-1 protects the adult vasculature against plasma leakage,” Nature Medicine, vol. 6, no. 4, pp. 460–463, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Thurston, C. Suri, K. Smith et al., “Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1,” Science, vol. 286, no. 5449, pp. 2511–2514, 1999. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Wang, S. Pampou, K. Fujikawa, and L. Varticovski, “Opposing effect of angiopoietin-1 on VEGF-mediated disruption of endothelial cell-cell interactions requires activation of PKCβ,” Journal of Cellular Physiology, vol. 198, no. 1, pp. 53–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Watanabe, J. L. Boyer, and R. G. Crystal, “Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema,” Human Gene Therapy, vol. 20, no. 6, pp. 598–610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. A. Dietl, J. A. Wernly, S. B. Pett et al., “Extracorporeal membrane oxygenation support improves survival of patients with severe Hantavirus cardiopulmonary syndrome,” Journal of Thoracic and Cardiovascular Surgery, vol. 135, no. 3, pp. 579–584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. D. Mukhopadhyay, L. Tsiokas, X. M. Zhou, D. Foster, J. S. Brugge, and V. P. Sukhatme, “Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation,” Nature, vol. 375, no. 6532, pp. 577–581, 1995. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Salven, A. Orpana, and H. Joensuu, “Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor,” Clinical Cancer Research, vol. 5, no. 3, pp. 487–491, 1999. View at Scopus
  61. J. Zhang, T. Silva, T. Yarovinsky et al., “VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling,” Circulation Research, vol. 107, no. 3, pp. 408–417, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. L. B. Ware, R. J. Kaner, R. G. Crystal et al., “VEGF levels in the alveolar compartment do not distinguish between ARDS and hydrostatic pulmonary oedama,” European Respiratory Journal, vol. 26, no. 1, pp. 101–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. R. Xiao, S. Yang, F. Koster, C. Ye, C. Stidley, and B. Hjelle, “Sin Nombre viral RNA load in patients with hantavirus cardiopulmonary syndrome,” Journal of Infectious Diseases, vol. 194, no. 10, pp. 1403–1409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Gracia, B. Armien, S. Q. Simpson et al., “Convalescent pulmonary dysfunction following hantavirus pulmonary syndrome in panama and the United States,” Lung, vol. 188, no. 5, pp. 387–391, 2010. View at Publisher · View at Google Scholar · View at Scopus