About this Journal Submit a Manuscript Table of Contents
Bioinorganic Chemistry and Applications
Volume 2012 (2012), Article ID 976495, 9 pages
http://dx.doi.org/10.1155/2012/976495
Research Article

Physicochemical Properties and Cellular Responses of Strontium-Doped Gypsum Biomaterials

1Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, P.O. Box 31787/316, Karaj 3177983634, Iran
2Ceramics Department, Materials and Energy Reserach Center, P.O. Box 31787/316, Karaj 3177983634, Iran

Received 25 January 2012; Accepted 1 April 2012

Academic Editor: Spyros Perlepes

Copyright © 2012 Amir Pouria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper describes some physical, structural, and biological properties of gypsum bioceramics doped with various amounts of strontium ions (0.19–2.23 wt%) and compares these properties with those of a pure gypsum as control. Strontium-doped gypsum (gypsum:Sr) was obtained by mixing calcium sulfate hemihydrate powder and solutions of strontium nitrate followed by washing the specimens with distilled water to remove residual salts. Gypsum was the only phase found in the composition of both pure and gypsum:Sr, meanwhile a shift into lower diffraction angles was observed in the X-ray diffraction patterns of doped specimens. Microstructure of all gypsum specimens consisted of many rod-like small crystals entangled to each other with more elongation and higher thickness in the case of gypsum:Sr. The Sr-doped sample exhibited higher compressive strength and lower solubility than pure gypsum. A continuous release of strontium ions was observed from the gypsum:Sr during soaking it in simulated body fluid for 14 days. Compared to pure gypsum, the osteoblasts cultured on strontium-doped samples showed better proliferation rate and higher alkaline phosphatase activity, depending on Sr concentration. These observations can predict better in vivo behavior of strontium-doped gypsum compared to pure one.