Bioinorganic Chemistry and Applications The latest articles from Hindawi Publishing Corporation © 2014 , Hindawi Publishing Corporation . All rights reserved. Syntheses, Characterization, Thermal, and Antimicrobial Studies of Lanthanum(III) Tolyl/Benzyldithiocarbonates Wed, 09 Apr 2014 08:30:49 +0000 Lanthanum(III) tris(O-tolyl/benzyldithiocarbonates), [La(ROCS2)] (R = o-, m-, p-CH3C6H4 and C6H5CH2), were isolated as yellow solid by the reaction of LaCl3·7H2O with sodium salt of tolyl/benzyldithiocarbonates, ROCS2Na (R = o-, m-, p-CH3C6H4 and C6H5CH2), in methanol under anhydrous conditions in 1 : 3 molar ratio. These complexes have formed adducts with nitrogen and phosphorus donor molecules by straightforward reaction of these complexes with donor ligands, which have the composition of the type [La(ROCS2)3·nL] (where n = 2, L = NC5H5 or P(C6H5)3 and n = 1, L = N2C12H8 or N2C10H8). Elemental analyses, mass, IR, TGA, and heteronuclear NMR (1H, 13C and 31P) spectroscopic studies indicated bidentate mode of bonding by dithiocarbonate ligands leading to hexacoordinated and octacoordinated geometry around the lanthanum atom. Antimicrobial (antifungal and antibacterial) activity of the free ligands and some of the complexes have also been investigated which exhibited significantly more activity for the complexes than the free ligands. Savit Andotra, Nidhi Kalgotra, and Sushil K. Pandey Copyright © 2014 Savit Andotra et al. All rights reserved. Reversible Dissociation and Ligand-Glutathione Exchange Reaction in Binuclear Cationic Tetranitrosyl Iron Complex with Penicillamine Tue, 25 Mar 2014 12:20:24 +0000 This paper describes a comparative study of the decomposition of two nitrosyl iron complexes (NICs) with penicillamine thiolic ligands [Fe2(SC5H11NO2)2(NO)4]SO4·5H2O (I) and glutathione- (GSH-) ligands [Fe2(SC10H17N3O6)2(NO)4]SO4·2H2O (II), which spontaneously evolve to NO in aqueous medium. NO formation was measured by a sensor electrode and by spectrophotometric methods by measuring the formation of a hemoglobin- (Hb-) NO complex. The NO evolution reaction rate from (I)   = (4.6 ± 0.1)·10−3 s−1 and the elimination rate constant of the penicillamine ligand = (1.8 ± 0.2)·10−3 s−1 at 25°C in 0.05 M phosphate buffer,  pH 7.0, was calculated using kinetic modeling based on the experimental data. Both reactions are reversible. Spectrophotometry and mass-spectrometry methods have firmly shown that the penicillamine ligand is exchanged for GS− during decomposition of 1.5·10−4 M (I) in the presence of 10−3 M GSH, with 76% yield in 24 h. As has been established, such behaviour is caused by the resistance of (II) to decomposition due to the higher affinity of iron to GSH in the complex. The discovered reaction may impede S-glutathionylation of the essential enzyme systems in the presence of (I) and is important for metabolism of NIC, connected with its antitumor activity. Lidia Syrtsova, Natalia Sanina, Konstantin Lyssenko, Evgeniy Kabachkov, Boris Psikha, Natal’ja Shkondina, Olesia Pokidova, Alexander Kotelnikov, and Sergey Aldoshin Copyright © 2014 Lidia Syrtsova et al. All rights reserved. Degradation of Methylene Blue Using Biologically Synthesized Silver Nanoparticles Wed, 19 Mar 2014 12:45:01 +0000 Nowadays plant mediated synthesis of nanoparticles has great interest and achievement due to its eco-benign and low time consuming properties. In this study silver nanoparticles were successfully synthesized by using Morinda tinctoria leaf extract under different pH. The aqueous leaf extract was added to silver nitrate solution; the color of the reaction medium was changed from pale yellow to brown and that indicates reduction of silver ions to silver nanoparticles. Thus synthesized silver nanoparticles were characterized by UV-Vis spectrophotometer. Dispersity and morphology was characterized by scanning electron microscope (SEM); crystalline nature and purity of synthesized silver nanoparticles were revealed by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). FTIR spectrum was examined to identify the effective functional molecules responsible for the reduction and stabilization of silver nanoparticles synthesized by leaf extract. The photocatalytic activity of the synthesized silver nanoparticles was examined by degradation of methylene blue under sunlight irradiation. Green synthesized silver nanoparticles were effectively degrading the dye nearly 95% at 72 h of exposure time. M. Vanaja, K. Paulkumar, M. Baburaja, S. Rajeshkumar, G. Gnanajobitha, C. Malarkodi, M. Sivakavinesan, and G. Annadurai Copyright © 2014 M. Vanaja et al. All rights reserved. Synthesis and Spectroscopic and Biological Activities of Zn(II) Porphyrin with Oxygen Donors Sun, 16 Mar 2014 09:00:07 +0000 Results of investigation of the physicochemical properties of zinc complexes containing substituted phenols as axial ligand having general formula [X-Zn-t(p-CH3) PP] [where X = different phenolates as axial ligand] in impurity-free organic solvent are presented. The four-coordinated zinc porphyrin accepts one axial ligand in 1 : 1 molar ratio to form five-coordinated complex, which is purified by column chromatography and characterized by physicochemical, biological evaluation and TGA/DTA studies. Absorption spectra show two principal effects: a red shift for phenols bearing substituted electron releasing groups (−CH3, −NH2) and blue shift for phenols bearing electron withdrawing groups (−NO2, −Cl) relative to Zn-t(p-CH3) PP, respectively. 1H NMR spectra show that the protons of the phenol ring axially attached to the central metal ion are merged with the protons of the porphyrin ring. Fluorescence spectra show two fluorescence peaks in the red region with emission ranging from 550 nm to 700 nm. IR spectra confirm the appearance of Zn-NPor and Zn-O vibrational frequencies, respectively. According to the thermal studies, the complexes have a higher thermal stability and the decomposition temperature of these complexes depends on the axial ligation. The respective complexes of X-ZnII-t(p-CH3) PP were found to possess higher antifungal activity (up to 90%) and higher in vitro cytotoxicity against human cancer cells lines. Gauri Devi Bajju, Sujata Kundan, Madhulika Bhagat, Deepmala Gupta, Ashu Kapahi, and Geeta Devi Copyright © 2014 Gauri Devi Bajju et al. All rights reserved. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide Wed, 12 Mar 2014 08:23:08 +0000 One new series of Cu(II), Co(II), and Ni(II) Schiff base complexes was prepared through the condensation reaction between 1-phenylindoline-2,3-dione with isonicotinohydrazide followed by metalation, respectively. The Schiff base ligand(L), (E)-N′-(2-oxo-1-phenylindolin-3-lidene)isonicotinohydrazide, and its complexes were found soluble in DMF and DMSO solvents and characterized by using the modern analytical and spectral techniques such as elemental analysis, conductivity, magnetic moments, IR, NMR, UV-visible, Mass, CV, and EPR. The elemental analysis data of ligand and their complexes were well agreed with their calculated values in which metal and ligand stoichiometry ratio 1 : 2 was noted. Molar conductance values indicated that all the complexes were found to be nonelectrolytes. All the complexes showed octahedral geometry around the central metal ions. Herein, we better characterized DNA binding with the complexes by UV-visible and CD spectroscopy and cyclic voltammetry techniques. The DNA cleavage experiments were carried out by Agarose gel electrophoresis method and the cytotoxicity experiments by MTT assay method. Based on the DNA binding, cleavage, and cytotoxicity studies, Cu and Ni complexes were found to be good anticancer agents against AGS-human gastric cancer cell line. Ramadoss Gomathi, Andy Ramu, and Athiappan Murugan Copyright © 2014 Ramadoss Gomathi et al. All rights reserved. (E)3-2-(1-(2,4-Dihydroxyphenyl)ethyldeneamino)phenyl)-2-methylquinazoline-4(3H)-one Schiff Base and Its Metal Complexes: A New Drug of Choice against Methicillin-Resistant Staphylococcus aureus Sun, 09 Mar 2014 08:31:42 +0000 The 3-(2-aminophenyl) quinazolin-2-methyl-4(3H)-one and 2,4-dihydroxyacetophenone undergo condensation to afford (E)3-2-(1-(2,4-dihydroxyphenyl)ethyldeneamino)phenyl)-2-methylquinazoline-4(3H)-one Schiff base (DHPEAPMQ). The newly synthesized Schiff base (DHPEAPMQ) and its metal complexes were evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus isolated from the Gulbarga region in India. The Cu(II), Ni(II), and Zn(II) complexes of Schiff base (DHPEAPMQ) showed good antimicrobial activity. So, this could be a new drug of choice. K. Siddappa, Sunilkumar B. Mane, and Deene Manikprabhu Copyright © 2014 K. Siddappa et al. All rights reserved. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety Wed, 05 Mar 2014 00:00:00 +0000 A novel Schiff base ligand N-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR, 1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand (L) behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand (L) and its metal complexes have been screened in vitro for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties for the ligand and its metal complexes against Artemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation. Nagesh Gunvanthrao Yernale and Mruthyunjayaswamy Bennikallu Hire Mathada Copyright © 2014 Nagesh Gunvanthrao Yernale and Mruthyunjayaswamy Bennikallu Hire Mathada. All rights reserved. Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens Tue, 04 Mar 2014 16:16:45 +0000 Dental care is an essential phenomenon in human health. Oral pathogens can cause severe break which may show the way to serious issues in human disease like blood circulation and coronary disease. In the current study, we demonstrated the synthesis and antimicrobial activity of cadmium sulphide and zinc sulphide nanoparticles against oral pathogens. The process for the synthesis of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles is fast, novel, and ecofriendly. Formation of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles was confirmed by surface plasmon spectra using UV-Vis spectrophotometer. The morphology of crystalline phase of nanoparticles was determined from transmission electron microscopy (TEM) and X-ray diffraction (XRD) spectra. The average size of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles was in the range of 10 nm to 25 nm and 65 nm, respectively, and the observed morphology was spherical. The results indicated that the proteins, which contain amine groups, played a reducing and controlling responsibility during the formation of cadmium sulphide (CdS) and zinc sulphide (ZnS) nanoparticles in the colloidal solution. The antimicrobial activity was assessed against oral pathogens such as Streptococcus sp. Staphylococcus sp. Lactobacillus sp., and Candida albicans and these results confirmed that the sulphide nanoparticles are exhibiting good bactericidal activity. C. Malarkodi, S. Rajeshkumar, K. Paulkumar, M. Vanaja, G. Gnanajobitha, and G. Annadurai Copyright © 2014 C. Malarkodi et al. All rights reserved. Synthesis, Spectral Characterization, and Antiproliferative Studies of Mixed Ligand Titanium Complexes of Adamantylamine Thu, 27 Feb 2014 10:11:13 +0000 Titanium complexes have been synthesized by the reaction between titanium tetrachloride (TiCl4), respective bidentate ligand [4,4′ -dimethoxy-2,2′ -bipyridine (bpome), 6,6′-dimethyl-2,2′-bipyridine (dpme), 1,2-diaminocyclohexane (dach), 1,10-phenanthroline (phen), and benzoylacetone (bzac)], and adamantylamine (ada) in 1 : 2 : 2 molar ratios, respectively. The structure of synthesized complexes was confirmed using elemental analysis, FTIR, UV-visible, 1H NMR, and mass spectrometry techniques. The nanocrystalline nature of complexes was confirmed by powder XRD study. The complexes were evaluated for cytotoxic potential in HeLa (cervical), C6 (glioma), and CHO (Chinese hamster ovarian) cell lines. The complex E was found to be more effective cytotoxic agent against HeLa cell line with an IC50 value of 4.06 µM. Furthermore, the effect of synthesized complexes was studied on different stages of the cell cycle in CHO cells. All complexes exhibited the dose dependent increase in cytotoxicity. The results have shown an increase in sub-G0 population with increase in concentration which is an indicative measure of apoptosis. Raj Kaushal, Nitesh Kumar, Ashun Chaudhary, Saroj Arora, and Pamita Awasthi Copyright © 2014 Raj Kaushal et al. All rights reserved. Novel Zinc(II) Complexes of Heterocyclic Ligands as Antimicrobial Agents: Synthesis, Characterisation, and Antimicrobial Studies Sun, 23 Feb 2014 16:55:53 +0000 The synthesis and antimicrobial activity of novel Zn(II) metal complexes derived from three novel heterocyclic Schiff base ligands 8-[(Z)-{[3-(N-methylamino)propyl]imino}methyl]-7-hydroxy-4-methyl-2H-chromen-2-one, 2-[(E)-{[4-(1H-1,2,4-triazol-1-ylmethyl)phenyl]imino}methyl]phenol, and (4S)-4-{4-[(E)-(2-hydroxybenzylidene)amino]benzyl}-1,3-oxazolidin-2-one have been described. These Schiff base ligands and metal complexes are characterised by spectroscopic techniques. According to these data, we propose an octahedral geometry to all the metal complexes. Antimicrobial activity of the Schiff base ligand and its metal complexes was studied against Gram negative bacteria: E. coli and Pseudomonas fluorescens, Gram positive bacteria: Staphylococcus aureus, and also against fungi, that is, C. albicans and A. niger. Some of the metal complexes show significant antifungal activity (MIC < 0.2 μg/mL). The “in vitro” data has identified [Zn(NMAPIMHMC)2]·2H2O, [Zn(TMPIMP)2]·2H2O, and [Zn(HBABO)2]·2H2O as potential therapeutic antifungal agents against C. albicans and A. niger. Ramesh S. Yamgar, Y. Nivid, Satish Nalawade, Mustapha Mandewale, R. G. Atram, and Sudhir S. Sawant Copyright © 2014 Ramesh S. Yamgar et al. All rights reserved. Temporal Changes in Concentrations of Some Trace Elements in Muscle Tissue of Crayfish, Astacus leptodactylus (Eschscholtz, 1823), from Keban Dam Lake Sun, 23 Feb 2014 07:12:03 +0000 Crayfish (Astacus leptodactylus Eschscholtz, 1823) is the native crayfish species in Turkey. It was exported regularly to Western Europe. In this study, bioaccumulation and temporal trends of some trace elements (arsenic: As, cadmium: Cd, copper: Cu, mercury: Hg, lead: Pb, and zinc: Zn) in edible abdomen muscle of crayfish from Keban Dam Lake (Elazığ, Turkey) were investigated for the 2006–2012 period. Sequence of metal concentration levels was Zn > Cu > Hg > Pb > Cd > As in muscle tissues. The highest concentration of Zn (21.69 mg kg−1) was detected in 2006, while the lowest (4.35 mg kg−1) in 2009. In general, it was found that the concentrations of trace elements investigated were lower than the maximum permissible limits of the food regulations of the Ministry of Food, Agriculture, and Livestock (MFAL), the Turkish Food Codex and Commission Regulation (EC). If the crayfish selected for the study are recognized as bioindicators of environmental pollution, then it is possible to conclude that the changes in studied trace elements concentrations in the Keban Dam Lake are being steady. Onder Aksu, Ragip Adiguzel, Veysel Demir, Numan Yildirim, Durali Danabas, Sebahat Seker, Safak Seyhaneyildiz Can, and Mustafa Ates Copyright © 2014 Onder Aksu et al. All rights reserved. Synthesis and Crystal Structure of the Bioinorganic Complex [Sb(Hedta)]·2H2O Thu, 13 Feb 2014 10:01:36 +0000 The antimony(III) complex [Sb(Hedta)]·2H2O was synthesized with ethylenediaminetetraacetic acid (H4edta) and antimonous oxide as main raw materials in aqueous solution. The composition and structure of the complex were characterized by elemental analysis, infrared spectra, single crystal X-ray diffraction, X-ray powder diffraction, thermogravimetry, and differential scanning calorimetry. The crystal structure of the antimony(III) complex belongs to orthorhombic system, space group Pna2(1), with cell parameters of (18) Å, (12) Å, (5) Å, (2) Å3, , and  g cm−3. The Sb(III) ion is five-coordinated by two amido N atoms and three carboxyl O atoms from a single Hedta3− ligand, forming a distorted trigonal bipyramid geometry. The thermal decomposition processes of the complex include dehydration, oxidation, and pyrolysis of the ligand, and the last residue is Sb2O3 at the temperature of 570°C. Di Li and Guo-Qing Zhong Copyright © 2014 Di Li and Guo-Qing Zhong. All rights reserved. Transition Metal(II) Complexes with Cefotaxime-Derived Schiff Base: Synthesis, Characterization, and Antimicrobial Studies Wed, 12 Feb 2014 13:11:48 +0000 New [ML2(H2O)2] complexes, where M = Co(II), Ni(II), Cu(II), and Zn(II) while L corresponds to the Schiff base ligand, were synthesized by condensation of cefotaxime with salicylaldehyde in situ in the presence of divalent metal salts in ethanolic medium. The complexes were characterized by elemental analyses, conductance, and magnetic measurements, as well as by IR and UV-Vis spectroscopy. The low values of the molar conductance indicate nonelectrolyte type of complexes. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for Co(II), Ni(II), and Zn(II) complexes while a tetragonal geometry for Cu(II) complex. Molecular structure of the Schiff base ligand and its complexes were studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. All the synthesized complexes were tested for in vitro antibacterial activity against some pathogenic bacterial strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. The MIC values shown by the complexes against these bacterial strains revealed that the metal complexes possess superior antibacterial activity than the Schiff base. Aurora Reiss, Mariana Carmen Chifiriuc, Emilia Amzoiu, and Cezar Ionuţ Spînu Copyright © 2014 Aurora Reiss et al. All rights reserved. Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus Mon, 03 Feb 2014 11:57:01 +0000 Development of ecofriendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology because of its tremendous impetus in modulating metals into nanosize to their potential use for human benefits. In this study an endophytic fungus, Penicillium sp., isolated from healthy leaves of Curcuma longa (turmeric) was subjected to extracellular biosynthesis of silver nanoparticles (AgNps) and their activity against MDR E. coli and S. aureus. The biosynthesized AgNps optimization was studied and characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). Then produced AgNps were tested against MDR E. coli and S. aureus. The endophytic fungus Penicillium sp. from healthy leaves of C. longa (turmeric) was found to be a good producer of AgNps. Parametric optimization showed maximum absorbance of 420–425 nm at pH-7, 25°C with 1 mM AgNO3 concentration and 15–20 g of wet biomass. Further TEM revealed the formation of spherical, well-dispersed nanoparticles with size ranging between 25 and 30 nm and FTIR shows the bands at 1644 and 1538 cm−1 corresponding to the binding vibrations of amide I and II bands of proteins, respectively. Antibacterial activity against MDR E. coli and S. aureus showed good results showing maximum zone of inhibition of 17 mm and 16 mm, respectively, at 80 µL of AgNps. Dattu Singh, Vandana Rathod, Shivaraj Ninganagouda, Jyothi Hiremath, Ashish Kumar Singh, and Jasmine Mathew Copyright © 2014 Dattu Singh et al. All rights reserved. Metal (II) Complexes Derived from Naphthofuran-2-carbohydrazide and Diacetylmonoxime Schiff Base: Synthesis, Spectroscopic, Electrochemical, and Biological Investigation Thu, 30 Jan 2014 06:43:01 +0000 A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method. R. B. Sumathi and M. B. Halli Copyright © 2014 R. B. Sumathi and M. B. Halli. All rights reserved. Sonochemical Synthesis of Silver Nanoparticles Using Starch: A Comparison Wed, 22 Jan 2014 13:29:14 +0000 A novel approach was applied to synthesize silver nanoparticles using starch under sonication. Colloidal silver nanoparticles solution exhibited an increase of absorption from 420 to 440 nm with increase starch quantity. Transmission electron microscopy followed by selected area electron diffraction pattern analysis indicated the formation of spherical, polydispersed, amorphous, silver nanoparticles of diameter ranging from 23 to 97 nm with mean particle size of 45.6 nm. Selected area electron diffraction (SAED) confirmed partial crystalline and amorphous nature of silver nanoparticles. Silver nanoparticles synthesized in this manner can be used for synthesis of 2-aryl substituted benzimidazoles which have numerous biomedical applications. The optimized reaction conditions include 10 ml of 1 mM AgNO3, 25 mg starch, 11 pH range, and sonication for 20 min at room temperature. Brajesh Kumar, Kumari Smita, Luis Cumbal, Alexis Debut, and Ravinandan Nath Pathak Copyright © 2014 Brajesh Kumar et al. All rights reserved. Preparation of Nanosilver and Nanogold Based on Dog Rose Aqueous Extract Mon, 06 Jan 2014 06:19:42 +0000 This paper describes a process of obtaining nanosilver and nanogold based on chemical reduction using substances contained in the aqueous extract of dog rose (Rosa canina). The resulting products were subjected to spectrophotometric analysis (UV-Vis), and testing of the nanoparticles’ size and suspension stability was carried out by measuring the electrokinetic potential, , via dynamic light scattering (DLS). Solid samples were imaged by scanning electron microscopy (SEM). The obtained data were given to statistical analysis in order to illustrate the properties of the suspension depending on the values of the input parameters: metal salts concentration, pH of the reaction mixture, and process temperature. In the course of the work, samples of nanosilver and nanogold were obtained, which were stable for over two months and which had a monomodal particle size distribution. Jolanta Pulit and Marcin Banach Copyright © 2014 Jolanta Pulit and Marcin Banach. All rights reserved. Preparation and Characterization of Di-, Tri-, and Tetranuclear Schiff Base Complexes Derived from Diamines and 3,4-Dihydroxybenzaldehyde Wed, 25 Dec 2013 09:46:38 +0000 A series of new di-, tri-, and tetranuclear Co(II) and Cu(II) complexes of three new diSchiff base ligands were synthesized by two different methods. The first method involved the synthesis of the three ligands from condensation reaction of 3,4-dihydroxybenzaldehyde (L′H2) with ethylenediamine (en), o-phenylenediamine (o-PD), or 4,5-dimethyl-1,2-phenylendiamine (DMPD) in a mole ratio of 2 : 1 followed by the reaction of the resulting Schiff bases ligands with Cu(II) or Co(II) ions in the presence of 2,2′-bipyridyl (L) to form the di- and trinuclear metal complexes. The second method involved the condensation of the copper complex LCu(II)L′ (L = 2,2′-bipyridyl, L′ = 4-formylbenzene-1,2-bis(olate)) with en, o-PD, or DMPD in a mole ratio of 2 : 1, respectively, followed by reaction with CuCl2 or Cu(ClO4)2 to form di-, tri-, and tetranuclear copper (II) complexes, respectively. The structures of the ligands and metal complexes were characterized by elemental analyses, NMR, and FTIR spectra. The geometries of metal complexes were suggested according to elemental analysis, electronic spectra, thermal analyses, atomic absorption, and magnetic moments and conductivity measurements. Ahlam Jameel Abdulghani and Asmaa Mohammed Noori Khaleel Copyright © 2013 Ahlam Jameel Abdulghani and Asmaa Mohammed Noori Khaleel. All rights reserved. Coordination Dynamics and Coordination Mechanism of a New Type of Anticoagulant Diethyl Citrate with Ca2+ Ions Tue, 24 Dec 2013 13:42:48 +0000 Diethyl citrate (Et2Cit) is a new potential anticoagulant. The coordination dynamics and coordination mechanism of Et2Cit with Ca2+ ions and the effect of pH on the complex were examined. The result was compared with that for the conventional anticoagulant sodium citrate (Na3Cit). The reaction order (n) of Et2Cit and Na3Cit with Ca2+ was 2.46 and 2.44, respectively. The reaction rate constant (k) was 120 and 289 L·mol−1·s−1. The reverse reaction rate constant () was 0.52 and 0.15 L·mol−1·s−1, respectively. It is indicated that the coordination ability of Et2Cit with Ca2+ was weaker than that of Na3Cit. However, the dissociation rate of the calcium complex of Et2Cit was faster than that of Na3Cit. Increased pH accelerated the dissociation rate of the complex and improved its anticoagulant effect. The Et2Cit complex with calcium was synthesized and characterized by elemental analysis, XRD, FT-IR, 1H NMR, and ICP. These characteristics indicated that O in –COOH and C–O–C of Et2Cit was coordinated with Ca2+ in a bidentate manner with 1 : 1 coordination proportion; that is, complex CaEt2Cit was formed. Given that CaEt2Cit released Ca2+ more easily than Na3Cit, a calcium solution was not needed in intravenous infusions using Et2Cit as anticoagulant unlike using Na3Cit. Consequently, hypocalcemia and hypercalcemia were avoided. Jin Han, Jun-Fa Xue, Meng Xu, Bao-Song Gui, Li Kuang, and Jian-Ming Ouyang Copyright © 2013 Jin Han et al. All rights reserved. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines Wed, 11 Dec 2013 11:56:34 +0000 The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (–9.87 M) exhibited higher antiproliferative activity than their free ligands (–70.86 and >250 M) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 M, resp.). Wilfredo Hernández, Juan Paz, Fernando Carrasco, Abraham Vaisberg, Evgenia Spodine, Jorge Manzur, Lothar Hennig, Joachim Sieler, Steffen Blaurock, and Lothar Beyer Copyright © 2013 Wilfredo Hernández et al. All rights reserved. Stabilization of Submicron Calcium Oxalate Suspension by Chondroitin Sulfate C May Be an Efficient Protection from Stone Formation Sun, 08 Dec 2013 11:29:54 +0000 The influences of chondroitin sulfate C (C6S) on size, aggregation, sedimentation, and Zeta potential of sub-micron calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) crystallites with mean sizes of about 330 nm were investigated using an X-ray diffractometer, nanoparticle size Zeta potential analyzer, ultraviolet spectrophotometer, and scanning electron microscope, after which the results were compared with those of micron-grade crystals. C6S inhibited the conversion of COD to COM and the aggregation of COM and COD crystallitesis; it also decreased their sedimentation rate, thus increasing their stability in aqueous solution. The smaller the size of the COD crystallites, the easier they can be converted to COM. The stability of sub-micron COD was worse than that of micron-grade crystals. C6S can inhibit the formation of calcium oxalate stones. Jun-Jun Li, Jun-Fa Xue, and Jian-Ming Ouyang Copyright © 2013 Jun-Jun Li et al. All rights reserved. Uptake and Distribution of Cd in Sweet Maize Grown on Contaminated Soils: A Field-Scale Study Thu, 21 Nov 2013 13:17:22 +0000 Maize is an economic crop that is also a candidate for use in phytoremediation in low-to-moderately Cd-contaminated soils, because the plant can accumulate high concentration of Cd in parts that are nonedible to humans while accumulating only a low concentration of Cd in the fruit. Maize cultivars CT38 and HZ were planted in field soils contaminated with Cd and nitrilotriacetic acid (NTA) was used to enhance the phytoextractive effect of the maize. Different organs of the plant were analyzed to identify the Cd sinks in the maize. A distinction was made between leaf sheath tissue and leaf lamina tissue. Cd concentrations decreased in the tissues in the following order: sheath > root > lamina > stem > fruit. The addition of NTA increased the amount of Cd absorbed but left the relative distribution of the metal among the plant organs essentially unchanged. The Cd in the fruit of maize was below the Chinese government’s permitted concentration in coarse cereals. Therefore, this study shows that it is possible to conduct maize phytoremediation of Cd-contaminated soil while, at the same time, harvesting a crop, for subsequent consumption. Wending Xu, Guining Lu, Zhi Dang, Changjun Liao, Qiangpei Chen, and Xiaoyun Yi Copyright © 2013 Wending Xu et al. All rights reserved. Concave Urinary Crystallines: Direct Evidence of Calcium Oxalate Crystals Dissolution by Citrate In Vivo Mon, 18 Nov 2013 16:01:46 +0000 The changes in urinary crystal properties in patients with calcium oxalate (CaOx) calculi after oral administration of potassium citrate (K3cit) were investigated via atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffractometry (XRD), and zeta potential analyzer. The AFM and SEM results showed that the surface of urinary crystals became concave, the edges and corners of crystals became blunt, the average size of urinary crystallines decreased significantly, and aggregation of urinary crystals was reduced. These changes were attributed to the significant increase in concentration of excreted citrate to  mg/L after K3cit intake from  mg/L before K3cit intake. After the amount of urinary citrate was increased, it complexed with Ca2+ ions on urinary crystals, which dissolved these crystals. Thus, the appearance of concave urinary crystals was a direct evidence of CaOx dissolution by citrate in vivo. The XRD results showed that the quantities and species of urinary crystals decreased after K3cit intake. The mechanism of inhibition of formation of CaOx stones by K3cit was possibly due to the complexation of Ca2+ with citrate, increase in urine pH, concentration of urinary inhibitor glycosaminoglycans (GAGs), and the absolute value of zeta potential after K3cit intake. Yun-Feng Shang, Meng Xu, Guang-Na Zhang, and Jian-Ming Ouyang Copyright © 2013 Yun-Feng Shang et al. All rights reserved. Synthesis, Characterization, and Bioactivity of Schiff Bases and Their , , , and Complexes Derived from Chloroacetophenone Isomers with S-Benzyldithiocarbazate and the X-Ray Crystal Structure of S-Benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate Mon, 11 Nov 2013 14:49:41 +0000 Two bidentate Schiff base ligands having nitrogen sulphur donor sequence were derived from the condensation of S-benzyldithiocarbazate (SBDTC) with 2-chloroacetophenone and 4-chloroacetophenone to give S-benzyl-β-N-(2-chlorophenyl)methylenedithiocarbazate (NS2) and S-benzyl-β-N-(4-chlorophenyl)methylenedithiocarbazate (NS4) isomers. Each of the ligands was then chelated with Cd2+, Zn2+, Cu2+, and Ni2+. The compounds were characterized via IR spectroscopy and melting point while the structure of NS4 was revealed via X-ray crystallography. Finally, the compounds were screened for antimicrobial activity to investigate the effect that is brought by the introduction of the chlorine atom to the benzene ring. X-ray crystallographic analysis showed that the structure of NS4 is planar with a phenyl ring that is nearly perpendicular to the rest of the molecules. The qualitative antimicrobial assay results showed that NS4 and its complexes lacked antifungal activity while Gram-positive bacteria were generally inhibited more strongly than Gram-negative bacteria. Furthermore, NS4 metal complexes were inhibited more strongly than the ligand while the opposite was seen with NS2 ligand and its complexes due to the partial solubility in dimethyl sulfoxide (DMSO). It was concluded that generally NS2 derivatives have higher bioactivity than that of NS4 derivatives and that the Cd complexes of both ligands have pronounced activity specifically on K. rhizophila. Mohammed Khaled bin Break, M. Ibrahim M. Tahir, Karen A. Crouse, and Teng-Jin Khoo Copyright © 2013 Mohammed Khaled bin Break et al. All rights reserved. Biosorption of Arsenic(III) from Aqueous Solutions by Modified Fungal Biomass of Paecilomyces sp. Wed, 23 Oct 2013 08:21:39 +0000 The biosorption of As(III) on iron-coated fungal biomass of Paecilomyces sp. was studied in this work. It was found that the biomass was very efficient removing the metal in solution, using Atomic Absorption, reaching the next percentage of removals: 64.5%. The highest adsorption was obtained at pH 6.0, at 30°C after 24 hours of incubation, with 1 mg/L of modified fungal biomass. Ismael Acosta Rodríguez, Víctor M. Martínez-Juárez, Juan F. Cárdenas-González, and María de Guadalupe Moctezuma-Zárate Copyright © 2013 Ismael Acosta Rodríguez et al. All rights reserved. Preparation, Characterization, and Antimicrobial Activities of Bimetallic Complexes of Sarcosine with Zn(II) and Sn(IV) Tue, 22 Oct 2013 08:38:19 +0000 Heterobimetallic complexes of Zn(II) and Sn(IV) with sarcosine have been synthesized at room temperature under stirring conditions by the reaction of sarcosine and zinc acetate in 2 : 1 molar ratio followed by the stepwise addition of CS2 and organotin(IV) halides, where R = Me, n-Bu, and Ph. The complexes were characterized by elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. IR data showed that the ligand acts in a bidentate manner. NMR data revealed the four coordinate geometry in solution state. In vitro antimicrobial activities data showed that complexes (3) and (4) were effective against bacterial and fungal strains with few exceptions. Yasir Arafat, Saqib Ali, Saira Shahzadi, and Muhammad Shahid Copyright © 2013 Yasir Arafat et al. All rights reserved. Syntheses, Spectral Characterization, and Antimicrobial Studies on the Coordination Compounds of Metal Ions with Schiff Base Containing Both Aliphatic and Aromatic Hydrazide Moieties Thu, 03 Oct 2013 12:19:21 +0000 An EtOH solution of 3-ketobutanehydrazide and salicylhydrazide on refluxing in equimolar ratio forms the corresponding Schiff base, LH3 (1). The latter reacts with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Zr(OH)2(IV), MoO2(VI), and UO2(VI) ions in equimolar ratio and forms the corresponding coordination compounds, [M(LH)(MeOH)3] (2, M = Mn, Co, Ni), [Cu(LH)]2 (3), [M′(LH)(MeOH)] (4, M′ = Zn, Cd), [Zr(OH)2(LH)(MeOH)2] (5), [MoO2(LH)(MeOH)] (6), and [UO2(LH)(MeOH)] (7). The coordination compounds have been characterized on the basis of elemental analyses, molar conductance, spectral (IR, reflectance, 1H NMR, ESR) studies, and magnetic susceptibility measurements. They are nonelectrolytes in DMSO. The coordination compounds, except 3, are monomers in diphenyl. They are active against gram-positive bacteria (S. aureus, B. subtilis), gram-negative bacteria (E. coli, P. aeruginosa), and yeast (S. cerevisiae, C. albicans). 1 acts as a dibasic tridentate ONO donor ligand in 2–7 coordinating through its both enolic O and azomethine N atoms. The coordination compounds 2 and 3 are paramagnetic, while rest of the compounds are diamagnetic. A square-planar structure to 3, a tetrahedral structure to 4, an octahedral structure to 2, 6, and 7, and a pentagonal bipyramidal structure to 5 are proposed. Dinesh Kumar, Silky Chadda, Jyoti Sharma, and Parveen Surain Copyright © 2013 Dinesh Kumar et al. All rights reserved. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties Tue, 01 Oct 2013 08:54:38 +0000 A new Schiff base of 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and 3-formyl-2-hydroxy-1H-quinoline (HL), and its Cu(II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes have been synthesized and characterized in the light of microanalytical, IR, NMR, UV-Vis, FAB-mass, ESR, XRD, and TGA spectral studies. The magnetic susceptibility measurements and low conductivity data provide evidence for monomeric and neutral nature of the complexes. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as tridentate ligand. The Cu(II), Co(II), and Ni(II) complexes were octahedral, whereas Zn(II), Cd(II), and Hg(II) complexes were tetrahedral in nature. The redox behavior of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage experiment performed using agarose gel electrophoresis method showed the cleavage of DNA by all the metal complexes. The free radical scavenging activity of newly synthesized compounds has been determined at a different concentration range by means of their interaction with the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). Mahendra Raj Karekal, Vivekanand Biradar, and Mruthyunjayaswamy Bennikallu Hire Mathada Copyright © 2013 Mahendra Raj Karekal et al. All rights reserved. Synthesis and Antioxidant Activities of Novel 5-Chlorocurcumin, Complemented by Semiempirical Calculations Sat, 21 Sep 2013 14:49:22 +0000 The novel curcumin derivative (1E,4Z,6E)-5-chloro-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one (5-chlorocurcumin) was prepared from natural curcumin. The newly synthesised compound was characterised by spectral studies (IR, 1H NMR, and 13C NMR). The free radical scavenging activity of 5-chlorocurcumin has been determined by measuring interaction with the stable free radical DPPH, and 5-chlorocurcumin has shown encouraging antioxidant activities. Theory calculations of the synthesised 5-chlorocurcumin were performed using molecular structures with optimised geometries. Molecular orbital calculations provided a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms. Ahmed A. Al-Amiery, Abdul Amir H. Kadhum, Hasan R. Obayes, and Abu Bakar Mohamad Copyright © 2013 Ahmed A. Al-Amiery et al. All rights reserved. Investigation of In Vitro Drug Release from Porous Hollow Silica Nanospheres Prepared of ZnS@SiO2 Core-Shell Thu, 19 Sep 2013 08:52:46 +0000 In this contribution, porous hollow silica nanoparticles using inorganic nanosized ZnS as a template were prepared. The hydrothermal method was used to synthesize pure ZnS nanospheres material. The ZnS@SiO2 core-shell nanocomposites were prepared using a simple sol-gel method successfully. The hollow silica nanostructures were achieved by selective removal of the ZnS core. The morphology, structure, and composition of the product were determined using powder X-ray diffraction (XRD), emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). The results demonstrated clearly that the pure ZnS nanoparticles are in a spherical form with the average size of 40 nm and correspond with zinc blend structure. The porous hollow silica nanoparticles obtained were exploited as drug carriers to investigate in vitro release behavior of amoxicillin in simulated body fluid (SBF). UV-visible spectrometry was carried out to determine the amount of amoxicillin entrapped in the carrier. Amoxicillin release profile from porous hollow silica nanoparticles followed a three-stage pattern and indicated a delayed release effect. Leila Vafayi and Soodabe Gharibe Copyright © 2013 Leila Vafayi and Soodabe Gharibe. All rights reserved.