About this Journal Submit a Manuscript Table of Contents
Bone Marrow Research
Volume 2012 (2012), Article ID 259351, 9 pages
http://dx.doi.org/10.1155/2012/259351
Research Article

Differential Expression of Matrix Metalloproteinase-2 Expression in Disseminated Tumor Cells and Micrometastasis in Bone Marrow of Patients with Nonmetastatic and Metastatic Prostate Cancer: Theoretical Considerations and Clinical Implications—An Immunocytochemical Study

1Hematology, Division of Medicine, Hospital de Carabineros de Chile, Simón Bolívar 2200, Ñuñoa, 7770199 Santiago, Chile
2Instituto de Bio-Oncología, Avenida Salvador 95, Oficina 95, Providencia, 7500710 Santiago, Chile
3Circulating Tumor Cell Unit, Faculty of Medicine, Universidad Mayor, Renato Sánchez 4369, Las Condes, 7550224 Santiago, Chile
4Faculty of Medicine, Universidad Diego Portales, Manuel Rodriguez Sur 415, 8370179 Santiago, Chile
5Faculty of Medicine, Universidad Pontificia Católica de Chile, Avenida Libertador Bernardo O'Higgins 340, 8331150 Santiago, Chile
6Radiotherapy, Fundación Arturo López Pérez, Rancagua 899, Providencia, 7500921 Santiago, Chile

Received 21 May 2012; Accepted 18 October 2012

Academic Editor: Joseph H. Antin

Copyright © 2012 Nigel P. Murray et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Evans and H. Møller, “Recent trends in prostate cancer incidence and mortality in Southeast England,” European Urology, vol. 43, no. 4, pp. 337–341, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. National Cancer Institute, Cancer Trends Progress Report: 2005 Update, NCI, Bethesda, MD, USA, 2005.
  3. E. Oliver, D. Gunnell, and J. L. Donovan, “Comparison of trends in prostate-cancer mortality in England and Wales and the USA,” The Lancet, vol. 355, no. 9217, pp. 1788–1789, 2000. View at Scopus
  4. B. I. Carlin and G. L. Andriole, “The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma,” Cancer, vol. 88, no. 12, pp. 2989–2994, 2000. View at Scopus
  5. W. F. Whitmore, “Natural history and staging of prostate cancer,” Urologic Clinics of North America, vol. 11, no. 2, pp. 205–220, 1984. View at Scopus
  6. J. G. Moreno, C. M. Croce, R. Fischer et al., “Detection of hematogenous micrometastasis in patients with prostate cancer,” Cancer Research, vol. 52, no. 21, pp. 6110–6112, 1992. View at Scopus
  7. A. F. Chambers and L. M. Matrisian, “Changing views of the role of matrix metalloproteinases in metastasis,” Journal of the National Cancer Institute, vol. 89, no. 17, pp. 1260–1270, 1997. View at Scopus
  8. M. Stearns and M. E. Stearns, “Immunohistochemical studies of activated matrix metalioproteinase-2 (MMP-2a) expression in human prostate cancer,” Oncology Research, vol. 8, no. 2, pp. 63–67, 1996. View at Scopus
  9. D. P. Wood and M. Banerjee, “Presence of circulating prostate cells in the bone marrow of patients undergoing radical prostatectomy is predictive of disease-free survival,” Journal of Clinical Oncology, vol. 15, no. 12, pp. 3451–3457, 1997. View at Scopus
  10. H. Kuniyasu, P. Troncoso, D. Johnston et al., “Relative expression of type IV collagenase, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinguishes organ-confined from pathologically advanced prostate cancers,” Clinical Cancer Research, vol. 6, no. 6, pp. 2295–2308, 2000. View at Scopus
  11. J. S. Ross, P. Kaur, C. E. Sheehan, H. A. G. Fisher, R. A. Kaufman Jr., and B. V. S. Kallakury, “Prognostic significance of matrix metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expression in prostate cancer,” Modern Pathology, vol. 16, no. 3, pp. 198–205, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Trudel, Y. Fradet, F. Meyer, F. Harel, and B. Têtu, “Significance of MMP-2 expression in prostate cancer: an immunohistochemical study,” Cancer Research, vol. 63, no. 23, pp. 8511–8515, 2003. View at Scopus
  13. A. R. Nelson, B. Fingleton, M. L. Rothenberg, and L. M. Matrisian, “Matrix metalloproteinases: biologic activity and clinical implications,” Journal of Clinical Oncology, vol. 18, no. 5, pp. 1135–1149, 2000. View at Scopus
  14. Y. A. DeClerck, S. Imren, A. M. P. Montgomery, B. M. Mueller, R. A. Reisfeld, and W. E. Laug, “Proteases and protease inhibitors in tumor progression,” Advances in Experimental Medicine and Biology, vol. 425, pp. 89–97, 1997. View at Scopus
  15. A. Noël, V. Albert, K. Bajou et al., “New functions of stromal proteases and their inhibitors in tumor progression,” Surgical Oncology Clinics of North America, vol. 10, no. 2, pp. 417–432, 2001. View at Scopus
  16. E. Borgen, B. Naume, J. M. Nesland et al., “Standardization of the immunocytochemical detection of cancer cells in BM and blood: I. Establishment of objective criteria for the evaluation of immunostained cells,” Cytotherapy, vol. 1, no. 5, pp. 377–388, 1999. View at Scopus
  17. M. Egeblad and Z. Werb, “New functions for the matrix metalloproteinases in cancer progression,” Nature Reviews Cancer, vol. 2, no. 3, pp. 161–174, 2002. View at Scopus
  18. M. D. Sternlicht and Z. Werb, “How matrix metalloproteinases regulate cell behavior,” Annual Review of Cell and Developmental Biology, vol. 17, pp. 463–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Morozevich, N. Kozlova, I. Cheglakov, N. Ushakova, and A. Berman, “Integrin α5β1 controls invasion of human breast carcinoma cells by direct and indirect modulation of MMP-2 collagenase activity,” Cell Cycle, vol. 8, no. 14, pp. 2219–2225, 2009. View at Scopus
  20. O. V. Glinskii, V. H. Huxley, J. R. Turk et al., “Continuous real time ex vivo epifluorescent video microscopy for the study of metastatic cancer cell interactions with microvascular endothelium,” Clinical and Experimental Metastasis, vol. 20, no. 5, pp. 451–458, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. B. Al-Mehdi, K. Tozawa, A. B. Fisher, L. Shientag, A. Lee, and R. J. Muschel, “Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis,” Nature Medicine, vol. 6, no. 1, pp. 100–102, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. O. V. Glinskii, V. H. Huxley, G. V. Glinsky, K. J. Pienta, A. Raz, and V. V. Glinsky, “Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs,” Neoplasia, vol. 7, no. 5, pp. 522–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. F. W. Orr, H. H. Wang, R. M. Lafrenie, S. Scherbarth, and D. M. Nance, “Interactions between cancer cells and the endothelium in metastasis,” The Journal of Pathology, vol. 190, pp. 310–329, 2000.
  24. L. W. K. Chung, A. Baseman, V. Assikis, and H. E. Zhau, “Molecular insights into prostate cancer progression: the missing link of tumor microenvironment,” Journal of Urology, vol. 173, no. 1, pp. 10–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Sato, T. Sakai, Y. Noguchi, M. Takita, S. Hirakawa, and A. Ito, “Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases,” Gynecologic Oncology, vol. 92, no. 1, pp. 47–56, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Y. Jang, Y. K. Jeon, and C. W. Kim, “Degradation of HER2/neu by ANT2 shRNA suppresses migration and invasiveness of breast cancer cells,” BMC Cancer, vol. 10, article 391, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. N. P. Murray, L. V. Badinez, R. R. Dueñas, N. Orellana, and P. Tapia, “Positive HER-2 protein expression in circulating prostate cells and micro-metastasis, resistant to androgen blockage but not diethylstilbestrol,” Indian Journal of Urology, vol. 27, no. 2, pp. 200–207, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. N. P. Murray, G. M. Calaf, and L. Badínez, “Presence of prostate cells in bone marrow biopsies as a sign of micrometastasis in cancer patients,” Oncology Reports, vol. 21, no. 3, pp. 571–575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Heissig, Y. Ohki, Y. Sato, S. Rafii, Z. Werb, and K. Hattori, “A role for niches in hematopoietic cell development,” Hematology, vol. 10, no. 3, pp. 247–253, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Yaniv, J. Stein, D. L. Farkas, and N. Askenasy, “The tale of early hematopoietic cell seeding in the bone marrow niche,” Stem Cells and Development, vol. 15, no. 1, pp. 4–16, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. R. N. Kaplan, B. Psaila, and D. Lyden, “Niche-to-niche migration of bone-marrow-derived cells,” Trends in Molecular Medicine, vol. 13, no. 2, pp. 72–81, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. R. S. Taichman, “Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche,” Blood, vol. 105, no. 7, pp. 2631–2639, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Bergers, R. Brekken, G. McMahon et al., “Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis,” Nature Cell Biology, vol. 2, no. 10, pp. 737–744, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Kaminski, J. C. Hahne, E. L. M. Haddouti, A. Florin, A. Wellmann, and N. Wernert, “Tumour-stroma interactions between metastatic prostate cancer cells and fibroblasts,” International Journal of Molecular Medicine, vol. 18, no. 5, pp. 941–950, 2006. View at Scopus
  35. N. Wernert, F. Gilles, V. Fafeur et al., “Stromal expression of c-Ets1 transcription factor correlates with tumor invasion,” Cancer Research, vol. 54, no. 21, pp. 5683–5688, 1994. View at Scopus
  36. B. C. Patterson and Q. A. Sang, “Angiostatin-converting enzyme activities of human matrilysin (MMP-7) and gelatinase B/type IV collagenase (MMP.9),” Journal of Biological Chemistry, vol. 272, no. 46, pp. 28823–28825, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Suzuki, G. Raab, M. A. Moses, C. A. Fernandez, and M. Klagsbrun, “Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site,” Journal of Biological Chemistry, vol. 272, no. 50, pp. 31730–31737, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. G. P. Swanson, M. A. Hussey, C. M. Tangen et al., “Predominant treatment failure in postprostatectomy patients is local: analysis of patterns of treatment failure in SWOG 8794,” Journal of Clinical Oncology, vol. 25, no. 16, pp. 2225–2229, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. D. Mason, M. R. Sydes, J. Glaholm et al., “Oral sodium clodronate for nonmetastatic prostate cancer—results of a randomized double-blind placebo-controlled trial: medical research council PR04 (ISRCTN61384873),” Journal of the National Cancer Institute, vol. 99, no. 10, pp. 765–776, 2007. View at Publisher · View at Google Scholar · View at Scopus