Abstract

A method of fluorescent nanoparticle-based indirect immunofluorescence microscopy (FNP-IIFM) was developed for the rapid detection of Mycobacterium tuberculosis. An anti-Mycobacterium tuberculosis antibody was used as primary antibody to recognize Mycobacterium tuberculosis, and then an antibody binding protein (Protein A) labeled with Tris(2,2-bipyridyl)dichlororuthenium(II) hexahydrate (RuBpy)-doped silica nanoparticles was used to generate fluorescent signal for microscopic examination. Prior to the detection, Protein A was immobilized on RuBpy-doped silica nanoparticles with a coverage of 5.1×102 molecules/nanoparticle. With this method, Mycobacterium tuberculosis in bacterial mixture as well as in spiked sputum was detected. The use of the fluorescent nanoparticles reveals amplified signal intensity and higher photostability than the direct use of conventional fluorescent dye as label. Our preliminary studies have demonstrated the potential application of the FNP-IIFM method for rapid detection of Mycobacterium tuberculosis in clinical samples.