About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2008 (2008), Article ID 453590, 9 pages
http://dx.doi.org/10.1155/2008/453590
Research Article

CFP and YFP, but Not GFP, Provide Stable Fluorescent Marking of Rat Hepatic Adult Stem Cells

Programs in Regenerative Biology and Cancer, Boston Biomedical Research Institute, Watertown, MA 02472, USA

Received 27 November 2007; Revised 10 January 2008; Accepted 2 February 2008

Academic Editor: Mouldy Sioud

Copyright © 2008 Rouzbeh R. Taghizadeh and James L. Sherley. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. W. Cody, D. C. Prasher, W. M. Westler, F. G. Prendergast, and W. W. Ward, “Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein,” Biochemistry, vol. 32, no. 5, pp. 1212–1218, 1993. View at Publisher · View at Google Scholar
  2. M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, vol. 263, no. 5148, pp. 802–805, 1994. View at Publisher · View at Google Scholar
  3. Y. Li and M. S. Horwitz, “Use of green fluorescent protein in studies of apoptosis of transfected cells,” BioTechniques, vol. 23, no. 6, pp. 1026–1029, 1997.
  4. Y. Yoon, K. Pitts, and M. McNiven, “Studying cytoskeletal dynamics in living cells using green fluorescent protein,” Molecular Biotechnology, vol. 21, no. 3, pp. 241–250, 2002. View at Publisher · View at Google Scholar
  5. Y.-X. Zeng, K. Somasundaram, N. S. Prabhu, R. Krishnadasan, and W. S. El-Deiry, “Detection and analysis of living, growth-inhibited mammalian cells following transfection,” BioTechniques, vol. 23, no. 1, pp. 88–94, 1997.
  6. S. Wang and T. Hazelrigg, “Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis,” Nature, vol. 369, no. 6479, pp. 400–403, 1994. View at Publisher · View at Google Scholar
  7. A. Amsterdam, S. Lin, and N. Hopkins, “The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos,” Developmental Biology, vol. 171, no. 1, pp. 123–129, 1995. View at Publisher · View at Google Scholar
  8. K. G. Peters, P. S. Rao, B. S. Bell, and L. A. Kindman, “Green fluorescent fusion proteins: powerful tools for monitoring protein expression in live zebrafish embryos,” Developmental Biology, vol. 171, no. 1, pp. 252–257, 1995. View at Publisher · View at Google Scholar
  9. T. Takada, K. Iida, T. Awaji, et al., “Selective production of transgenic mice using green fluorescent protein as a marker,” Nature Biotechnology, vol. 15, no. 5, pp. 458–461, 1997. View at Publisher · View at Google Scholar
  10. M. Ikawa, K. Kominami, Y. Yoshimura, K. Tanaka, Y. Nishimune, and M. Okabe, “Green fluorescent protein as a marker in transgenic mice,” Development, Growth & Differentiation, vol. 37, no. 4, pp. 455–459, 1995. View at Publisher · View at Google Scholar
  11. M. Ikawa, K. Kominami, Y. Yoshimura, K. Tanaka, Y. Nishimune, and M. Okabe, “A rapid and non-invasive selection of transgenic embryos before implantation using green fluorescent protein (GFP),” FEBS Letters, vol. 375, no. 1-2, pp. 125–128, 1995. View at Publisher · View at Google Scholar
  12. M. Okabe, M. Ikawa, K. Kominami, T. Nakanishi, and Y. Nishimune, “‘Green mice’ as a source of ubiquitous green cells,” FEBS Letters, vol. 407, no. 3, pp. 313–319, 1997. View at Publisher · View at Google Scholar
  13. Y. Hakamata, K. Tahara, H. Uchida, et al., “Green fluorescent protein-transgenic rat: a tool for organ transplantation research,” Biochemical and Biophysical Research Communications, vol. 286, no. 4, pp. 779–785, 2001. View at Publisher · View at Google Scholar
  14. W. C. Kisseberth, N. T. Brettingen, J. K. Lohse, and E. P. Sandgren, “Ubiquitous expression of marker transgenes in mice and rats,” Developmental Biology, vol. 214, no. 1, pp. 128–138, 1999. View at Publisher · View at Google Scholar
  15. H.-S. Liu, M.-S. Jan, C.-K. Chou, P.-H. Chen, and N.-J. Ke, “Is green fluorescent protein toxic to the living cells?” Biochemical and Biophysical Research Communications, vol. 260, no. 3, pp. 712–717, 1999. View at Publisher · View at Google Scholar
  16. L. Lybarger, D. Dempsey, K. J. Franek, and R. Chervenak, “Rapid generation and flow cytometric analysis of stable GFP-expressing cells,” Cytometry, vol. 25, no. 3, pp. 211–220, 1996. View at Publisher · View at Google Scholar
  17. S. J. Kromenaker and F. Srienc, “Stability of producer hybridoma cell lines after cell sorting: a case study,” Biotechnology Progress, vol. 10, no. 3, pp. 299–307, 1994. View at Publisher · View at Google Scholar
  18. M. Zeyda, N. Borth, R. Kunert, and H. Katinger, “Optimization of sorting conditions for the selection of stable, high-producing mammalian cell lines,” Biotechnology Progress, vol. 15, no. 5, pp. 953–957, 1999. View at Publisher · View at Google Scholar
  19. K. Hong, J. L. Sherley, and D. A. Lauffenburger, “Methylation of episomal plasmids as a barrier to transient gene expression via a synthetic delivery vector,” Biomolecular Engineering, vol. 18, no. 4, pp. 185–192, 2001. View at Publisher · View at Google Scholar
  20. R. Y. Tsien, “The green fluorescent protein,” Annual Review of Biochemistry, vol. 67, pp. 509–544, 1998. View at Publisher · View at Google Scholar
  21. R. Heim, D. C. Prasher, and R. Y. Tsien, “Wavelength mutations and posttranslational autoxidation of green fluorescent protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 26, pp. 12501–12504, 1994. View at Publisher · View at Google Scholar
  22. H.-S. Lee, G. G. Crane, J. R. Merok, et al., “Clonal expansion of adult rat hepatic stem cell lines by suppression of asymmetric cell kinetics (SACK),” Biotechnology and Bioengineering, vol. 83, no. 7, pp. 760–771, 2003. View at Publisher · View at Google Scholar
  23. G. G. Crane, R. R. Taghizadeh, and J. L. Sherley, in preparation.
  24. J. L. Sherley, “Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture,” Stem Cells, vol. 20, no. 6, pp. 561–572, 2002. View at Publisher · View at Google Scholar
  25. C. E. Semino, J. R. Merok, G. G. Crane, G. Panagiotakos, and S. Zhang, “Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds,” Differentiation, vol. 71, no. 4-5, pp. 262–270, 2003. View at Publisher · View at Google Scholar
  26. A. Sánchez, R. Pagan, A. M. Álvarez, et al., “Transforming growth factor-β (TGF-β) and EGF promote cord-like structures that indicate terminal differentiation of fetal hepatocytes in primary culture,” Experimental Cell Research, vol. 242, no. 1, pp. 27–37, 1998. View at Publisher · View at Google Scholar
  27. S. Amsellem, F. Pflumio, D. Bardinet, et al., “Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein,” Nature Medicine, vol. 9, no. 11, pp. 1423–1427, 2003. View at Publisher · View at Google Scholar
  28. J. Krosl, P. Austin, N. Beslu, E. Kroon, R. K. Humphries, and G. Sauvageau, “In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein,” Nature Medicine, vol. 9, no. 11, pp. 1428–1432, 2003. View at Publisher · View at Google Scholar
  29. N. Uchida and I. L. Weissman, “Searching for hematopoietic stem cells: evidence that Thy1.1IoLinSca1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow,” Journal of Experimental Medicine, vol. 175, no. 1, pp. 175–184, 1992. View at Publisher · View at Google Scholar
  30. G. J. Spangrude, S. Heimfeld, and I. L. Weissman, “Purification and characterization of mouse hematopoietic stem cells,” Science, vol. 241, no. 4861, pp. 58–62, 1988. View at Publisher · View at Google Scholar
  31. A. J. Wagers, R. I. Sherwood, J. L. Christensen, and I. L. Weissman, “Little evidence for developmental plasticity of adult hematopoietic stem cells,” Science, vol. 297, no. 5590, pp. 2256–2259, 2002. View at Publisher · View at Google Scholar
  32. A. J. Wagers and I. L. Weissman, “Plasticity of adult stem cells,” Cell, vol. 116, no. 5, pp. 639–648, 2004. View at Publisher · View at Google Scholar
  33. F. D. Camargo, S. M. Chambers, and M. A. Goodell, “Stem cell plasticity: from transdifferentiation to macrophage fusion,” Cell Proliferation, vol. 37, no. 1, pp. 55–65, 2004. View at Publisher · View at Google Scholar