About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 408794, 11 pages
http://dx.doi.org/10.1155/2009/408794
Research Article

Schwann Cells Overexpressing FGF-2 Alone or Combined with Manual Stimulation Do Not Promote Functional Recovery after Facial Nerve Injury

1Institute of Neuroanatomy, Hannover Medical School and Center for Systems Neuroscience (ZSN), 30625 Hannover, Germany
2Department of Otorhinolaryngology, University of Cologne, 50931 Cologne, Germany
3Department of Otorhinolaryngology, Friedrich-Schiller University Jena, 07740 Jena, Germany
4Department of Trauma, Hand and Reconstructive Surgery, University of Cologne, 50931, Germany
5Department of Orthopaedic Surgery, University of Cologne, 50931 Cologne, Germany
6School of Animal Biology, Western Australian Institute for Medical Research, The University of Western Australia, Crawley, Perth, WA 6009, Australia
7Department of Anatomy I, University of Cologne, 50931, Germany

Received 25 February 2009; Accepted 8 July 2009

Academic Editor: George Perry

Copyright © 2009 Kirsten Haastert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Hadlock, C. Sundback, D. Hunter, M. Cheney, and J. P. Vacanti, “A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration,” Tissue Engineering, vol. 6, no. 2, pp. 119–127, 2000. View at Publisher · View at Google Scholar
  2. A. Mosahebi, P. Fuller, M. Wiberg, and G. Terenghi, “Effect of allogeneic schwann cell transplantation on peripheral nerve regeneration,” Experimental Neurology, vol. 173, no. 2, pp. 213–223, 2002. View at Publisher · View at Google Scholar
  3. A. D. Ansselin, T. Fink, and D. F. Davey, “Peripheral nerve regeneration through nerve guides seeded with adult Schwann cells,” Neuropathology and Applied Neurobiology, vol. 23, no. 5, pp. 387–398, 1997.
  4. V. Guenard, P. Aebischer, and R. P. Bunge, “The astrocyte inhibition of peripheral nerve regeneration is reversed by Schwann cells,” Experimental Neurology, vol. 126, no. 1, pp. 44–60, 1994. View at Publisher · View at Google Scholar
  5. N. Lago, C. Casas, E. M. Muir, J. Rogers, and X. Navarro, “Effects of Schwann cell transplants in an experimental nerve amputee model,” Restorative Neurology and Neuroscience, vol. 27, no. 1, pp. 67–78, 2009. View at Publisher · View at Google Scholar
  6. Y.-S. Chen, C.-L. Hsieh, C.-C. Tsai, et al., “Peripheral nerve regeneration using silicone rubber chambers filled with collagen, laminin and fibronectin,” Biomaterials, vol. 21, no. 15, pp. 1541–1547, 2000. View at Publisher · View at Google Scholar
  7. L. A. Pfister, M. Papaloizos, H. P. Merkle, and B. Gander, “Nerve conduits and growth factor delivery in peripheral nerve repair,” Journal of the Peripheral Nervous System, vol. 12, no. 2, pp. 65–82, 2007. View at Publisher · View at Google Scholar
  8. A. M. Butt and J. Dinsdale, “Fibroblast growth factor 2 induces loss of adult oligodendrocytes and myelin in vivo,” Experimental Neurology, vol. 192, no. 1, pp. 125–133, 2005. View at Publisher · View at Google Scholar
  9. R. Dono, “Fibroblast growth factors as regulators of central nervous system development and function,” American Journal of Physiology, vol. 284, no. 4, pp. R867–R881, 2003.
  10. C. Grothe and M. Timmer, “The physiological and pharmacological role of basic fibroblast growth factor in the dopaminergic nigrostriatal system,” Brain Research Reviews, vol. 54, no. 1, pp. 80–91, 2007. View at Publisher · View at Google Scholar
  11. C. Grothe, K. Haastert, and J. Jungnickel, “Physiological function and putative therapeutic impact of the FGF-2 system in peripheral nerve regeneration-Lessons from in vivo studies in mice and rats,” Brain Research Reviews, vol. 51, no. 2, pp. 293–299, 2006. View at Publisher · View at Google Scholar
  12. P. Aebischer, A. N. Salessiotis, and S. R. Winn, “Basic fibroblast growth factor released from synthetic guidance channels facilitates peripheral nerve regeneration across long nerve gaps,” Journal of Neuroscience Research, vol. 23, no. 3, pp. 282–289, 1989.
  13. N. Danielsen, B. Pettmann, H. L. Vahlsing, M. Manthorpe, and S. Varon, “Fibroblast growth factor effects on peripheral nerve regeneration in a silicone chamber model,” Journal of Neuroscience Research, vol. 20, no. 3, pp. 320–330, 1988.
  14. J. Jungnickel, K. Haase, J. Konitzer, M. Timmer, and C. Grothe, “Faster nerve regeneration after sciatic nerve injury in mice over-expressing basic fibroblast growth factor,” Journal of Neurobiology, vol. 66, no. 9, pp. 940–948, 2006. View at Publisher · View at Google Scholar
  15. M. Timmer, S. Robben, F. Muller-Ostermeyer, G. Nikkhah, and C. Grothe, “Axonal regeneration across long gaps in silicone chambers filled with Schwann cells overexpressing high molecular weight FGF-2,” Cell Transplantation, vol. 12, no. 3, pp. 265–277, 2003.
  16. D. N. Angelov, O. Guntinas-Lichius, K. Wewetzer, W. F. Neiss, and M. Streppel, “Axonal branching and recovery of coordinated muscle activity after transection of the facial nerve in adult rats,” Advances in Anatomy Embryology and Cell Biology, vol. 180, pp. 1–130, 2005.
  17. D. N. Angelov, M. Ceynowa, O. Guntinas-Lichius, et al., “Mechanical stimulation of paralyzed vibrissal muscles following facial nerve injury in adult rat promotes full recovery of whisking,” Neurobiology of Disease, vol. 26, no. 1, pp. 229–242, 2007. View at Publisher · View at Google Scholar
  18. K. Haastert, Z. Ying, C. Grothe, and F. Gomez-Pinilla, “The effects of FGF-2 gene therapy combined with voluntary exercise on axonal regeneration across peripheral nerve gaps,” Neuroscience Letters, vol. 443, no. 3, pp. 179–183, 2008. View at Publisher · View at Google Scholar
  19. G. Keilhoff, F. Prätsch, G. Wolf, and H. Fansa, “Bridging extra large defects of peripheral nerves: possibilities and limitations of alternative biological grafts from acellular muscle and Schwann cells,” Tissue Engineering, vol. 11, no. 7-8, pp. 1004–1014, 2005. View at Publisher · View at Google Scholar
  20. K. Haastert, E. Lipokatic, M. Fischer, M. Timmer, and C. Grothe, “Differentially promoted peripheral nerve regeneration by grafted Schwann cells over-expressing different FGF-2 isoforms,” Neurobiology of Disease, vol. 21, no. 1, pp. 138–153, 2006. View at Publisher · View at Google Scholar
  21. S. Dohm, M. Streppel, O. Guntinas-Lichius, et al., “Local application of extracellular matrix proteins fails to reduce the number of axonal branches after varying reconstructive surgery on rat facial nerve,” Restorative Neurology and Neuroscience, vol. 16, no. 2, pp. 117–126, 2000.
  22. C. Guidry and F. Grinnell, “Heparin modulates the organization of hydrated collagen gels and inhibits gel contraction by fibroblasts,” Journal of Cell Biology, vol. 104, no. 4, pp. 1097–1103, 1987.
  23. C. Mauch, A. Hatamochi, K. Scharffetter, and T. Krieg, “Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel,” Experimental Cell Research, vol. 178, no. 2, pp. 493–503, 1988.
  24. K. Haastert, J. Grosskreutz, M. Jaeckel, et al., “Rat embryonic motoneurons in long-term co-culture with Schwann cells—a system to investigate motoneuron diseases on a cellular level in vitro,” Journal of Neuroscience Methods, vol. 142, no. 2, pp. 275–284, 2005. View at Publisher · View at Google Scholar
  25. C. Mauritz, C. Grothe, and K. Haastert, “Comparative study of cell culture and purification methods to obtain highly enriched cultures of proliferating adult rat Schwann cells,” Journal of Neuroscience Research, vol. 77, no. 3, pp. 453–461, 2004. View at Publisher · View at Google Scholar
  26. F. Muller-Ostermeyer, P. Claus, and C. Grothe, “Distinctive effects of rat fibroblast growth factor-2 isoforms on PC12 and Schwann cells,” Growth Factors, vol. 19, no. 3, pp. 175–191, 2001.
  27. E. Verdu, X. Navarro, G. Gudino-Cabrera, et al., “Olfactory bulb ensheathing cells enhance peripheral nerve regeneration,” NeuroReport, vol. 10, no. 5, pp. 1097–1101, 1999.
  28. T. L. Tomov, O. Guntinas-Lichius, M. Grosheva, et al., “An example of neural plasticity evoked by putative behavioral demand and early use of vibrissal hairs after facial nerve transection,” Experimental Neurology, vol. 178, no. 2, pp. 207–218, 2002. View at Publisher · View at Google Scholar
  29. H. J. Gundersen, “Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson,” Journal of Microscopy, vol. 143, pp. 3–45, 1986.
  30. A. S. Popratiloff, W. F. Neiss, E. Skouras, M. Streppel, O. Guntinas-Lichius, and D. N. Angelov, “Evaluation of muscle re-innervation employing pre- and post-axotomy injections of fluorescent retrograde tracers,” Brain Research Bulletin, vol. 54, no. 1, pp. 115–123, 2001. View at Publisher · View at Google Scholar
  31. O. Guntinas-Lichius, A. Irintchev, M. Streppel, et al., “Factors limiting motor recovery after facial nerve transection in the rat: combined structural and functional analyses,” European Journal of Neuroscience, vol. 21, no. 2, pp. 391–402, 2005. View at Publisher · View at Google Scholar
  32. J. G. Boyd and T. Gordon, “Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury,” Molecular Neurobiology, vol. 27, no. 3, pp. 277–323, 2003. View at Publisher · View at Google Scholar
  33. M. Streppel, N. Azzolin, S. Dohm, et al., “Focal application of neutralizing antibodies to soluble neurotrophic factors reduces collateral axonal branching after peripheral nerve lesion,” European Journal of Neuroscience, vol. 15, no. 8, pp. 1327–1342, 2002. View at Publisher · View at Google Scholar
  34. M. Greulich, “Anchoring the nasolabial fold,” in The Facial Palsies, C. H. Beurskens, R. S. van Gelder, P. G. Heymans, J. J. Manni, and J. P. A. Nicolai, Eds., pp. 235–243, Lemma Publishers, Utrecht, The Netherlands, 2005.
  35. O. Büngner, “Ueber die Degenerations- und Regenerationsvorgänge am Nerven nach Verletzungen,” Beiträge zur Pathologischen Anatomie, vol. 10, pp. 21–393, 1891.
  36. K. L. Golden, D. D. Pearse, B. Blits, et al., “Transduced Schwann cells promote axon growth and myelination after spinal cord injury,” Experimental Neurology, vol. 207, no. 2, pp. 203–217, 2007. View at Publisher · View at Google Scholar
  37. G. Lundborg, “Alternatives to autologous nerve grafts,” Handchirurgie Mikrochirurgie Plastische Chirurgie, vol. 36, no. 1, pp. 1–7, 2004. View at Publisher · View at Google Scholar
  38. C. E. Schmidt and J. B. Leach, “Neural tissue engineering: strategies for repair and regeneration,” Annual Review of Biomedical Engineering, vol. 5, pp. 293–347, 2003. View at Publisher · View at Google Scholar
  39. C. T. Chalfoun, G. A. Wirth, and G. R. D. Evans, “Tissue engineered nerve constructs: where do we stand?” Journal of Cellular and Molecular Medicine, vol. 10, no. 2, pp. 309–317, 2006. View at Publisher · View at Google Scholar
  40. K. Haastert and C. Grothe, “Gene therapy in peripheral nerve reconstruction approaches,” Current Gene Therapy, vol. 7, no. 3, pp. 221–228, 2007. View at Publisher · View at Google Scholar
  41. J. Jungnickel, K. Haastert, M. Grzybek, et al., “Mice lacking basic fibroblast growth factor showed faster sensory recovery,” Experimental Neurology. In press. View at Publisher · View at Google Scholar
  42. S. Pockett and J. R. Slack, “Source of the stimulus for nerve terminal sprouting in partially denervated muscle,” Neuroscience, vol. 7, no. 12, pp. 3173–3176, 1982. View at Publisher · View at Google Scholar
  43. J. R. Slack and S. Pockett, “Terminal sprouting of motoneurones is a local response to a local stimulus,” Brain Research, vol. 217, no. 2, pp. 368–374, 1981. View at Publisher · View at Google Scholar
  44. M. Sendtner, “Neurotrophic factors: effects in modulating properties of the neuromuscular endplate,” Cytokine and Growth Factor Reviews, vol. 9, no. 1, pp. 1–7, 1998. View at Publisher · View at Google Scholar
  45. M. C. Brown and R. Ironton, “Motor neurone sprouting induced by prolonged tetrodotoxin block of nerve action potentials,” Nature, vol. 265, no. 5593, pp. 459–461, 1977.
  46. M. C. Brown, R. L. Holland, W. G. Hopkins, and R. J. Keynes, “An assessment of the spread of the signal for terminal sprouting within and between muscles,” Brain Research, vol. 210, no. 1-2, pp. 145–151, 1981.
  47. M. Grosheva, S. Arnhold, O. Guntinas-Lichius, et al., “Bone marrow-derived mesenchymal stem cell transplantation does not improve quality of muscle reinnervation or recovery of motor function after facial nerve transection in rats,” Biological Chemistry, vol. 389, no. 7, pp. 873–888, 2008. View at Publisher · View at Google Scholar