About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 768086, 9 pages
http://dx.doi.org/10.1155/2009/768086
Research Article

Attenuation of Acute Lung Inflammation and Injury by Whole Body Cooling in a Rat Heatstroke Model

1Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
2Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
3Department of Biotechnology, Southern Taiwan University, Tainan 710, Taiwan
4Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan

Received 5 March 2009; Revised 25 September 2009; Accepted 1 October 2009

Academic Editor: Mari A. Smits

Copyright © 2009 Hsi-Hsing Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Whole body cooling is the current therapy of choice for heatstroke because the therapeutic agents are not available. In this study, we assessed the effects of whole body cooling on several indices of acute lung inflammation and injury which might occur during heatstroke. Anesthetized rats were randomized into the following groups and given (a) no treatment or (b) whole body cooling immediately after onset of heatstroke. As compared with the normothermic controls, the untreated heatstroke rats had higher levels of pleural exudates volume and polymorphonuclear cell numbers, lung myloperoxidase activity and inducible nitric oxide synthase expression, histologic lung injury score, and bronchoalveolar proinflammatory cytokines and glutamate, and PaCO2. In contrast, the values of mean arterial pressure, heart rate, PaO2, pH, and blood HCO3 were all significantly lower during heatstroke. The acute lung inflammation and injury and electrolyte imbalance that occurred during heatstroke were significantly reduced by whole body cooling. In conclusion, we identified heat-induced acute lung inflammation and injury and electrolyte imbalance could be ameliorated by whole body cooling.