About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 805709, 11 pages
http://dx.doi.org/10.1155/2009/805709
Research Article

Activation of Cyclin-Dependent Kinase 5 Is a Consequence of Cell Death

1Department of Biology, Queens College and Graduate Center of the City University of New York, Flushing, NY 11367, USA
2Department of Technology and Health, Higher Institute for Health, 00161 Rome, Italy
3Department of Drug Research and Evaluation, Highest Institute for Health, 00161 Rome, Italy
4Department of Biological Sciences, St. John's University, Jamaica, NY 11439, USA

Received 28 April 2009; Revised 20 June 2009; Accepted 14 July 2009

Academic Editor: Mauro Piacentini

Copyright © 2009 Yixia Ye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L.-H. Tsai, T. Takahashi, V. S. Caviness Jr., and E. Harlow, “Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system,” Development, vol. 119, no. 4, pp. 1029–1040, 1993.
  2. J. Lew, R. J. Winkfein, H. K. Paudel, and J. H. Wang, “Brain proline-directed protein kinase is a neurofilament kinase which displays high sequence homology to p34cdc2,” The Journal of Biological Chemistry, vol. 267, no. 36, pp. 25922–25926, 1992.
  3. F. A. Dhariwala and M. S. Rajadhyaksha, “An unusual member of the Cdk family: Cdk5,” Cellular and Molecular Neurobiology, vol. 28, no. 3, pp. 351–369, 2008. View at Publisher · View at Google Scholar
  4. Y. Hirota, T. Ohshima, N. Kaneko, et al., “Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone,” Journal of Neuroscience, vol. 27, no. 47, pp. 12829–12838, 2007. View at Publisher · View at Google Scholar
  5. L. Connell-Crowley, M. Le Gall, D. J. Vo, and E. Giniger, “The cyclin-dependent kinase Cdk5 controls multiple aspects of axon patterning in vivo,” Current Biology, vol. 10, no. 10, pp. 599–602, 2000. View at Publisher · View at Google Scholar
  6. S. Rakić, C. Davis, Z. Molnár, M. Nikolić, and J. G. Parnavelas, “Role of p35/Cdk5 in preplate splitting in the developing cerebral cortex,” Cerebral Cortex, vol. 16, supplement 1, pp. i35–i45, 2006.
  7. J. L. Rosales, J. D. Ernst, J. Hallows, and K.-Y. Lee, “GTP-dependent secretion from neutrophils is regulated by Cdk5,” The Journal of Biological Chemistry, vol. 279, no. 52, pp. 53932–53936, 2004. View at Publisher · View at Google Scholar
  8. R. Homayouni and T. Curran, “Cortical development: Cdk5 gets into sticky situations,” Current Biology, vol. 10, no. 9, pp. R331–R334, 2000. View at Publisher · View at Google Scholar
  9. Y. Miyamoto, J. Yamauchi, J. R. Chan, et al., “Cdk5 regulates differentiation of oligodendrocyte precursor cells through the direct phosphorylation of paxillin,” Journal of Cell Science, vol. 120, no. 24, pp. 4355–4366, 2007. View at Publisher · View at Google Scholar
  10. A. H. Hawasli and J. A. Bibb, “Alternative roles for Cdk5 in learning and synaptic plasticity,” Biotechnology Journal, vol. 2, no. 8, pp. 941–948, 2007. View at Publisher · View at Google Scholar
  11. X. Xin, F. Ferraro, N. Bäck, B. A. Eipper, and R. E. Mains, “Cdk5 and Trio modulate endocrine cell exocytosis,” Journal of Cell Science, vol. 117, no. 20, pp. 4739–4748, 2004. View at Publisher · View at Google Scholar
  12. E.-A. Choe, L. Liao, J.-Y. Zhou, et al., “Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1,” Journal of Neuroscience, vol. 27, no. 35, pp. 9503–9512, 2007. View at Publisher · View at Google Scholar
  13. Y. Feng and C. A. Walsh, “Protein-protein interactions, cytoskeletal regulation and neuronal migration,” Nature Reviews Neuroscience, vol. 2, no. 6, pp. 408–416, 2001. View at Publisher · View at Google Scholar
  14. J. C. Cruz and L.-H. Tsai, “Cdk5 deregulation in the pathogenesis of Alzheimer's disease,” Trends in Molecular Medicine, vol. 10, no. 9, pp. 452–458, 2004. View at Publisher · View at Google Scholar
  15. Q. Guo, “When good Cdk5 turns bad,” Science of Aging Knowledge Environment, vol. 2006, no. 5, article pe5, 2006. View at Publisher · View at Google Scholar
  16. J. Zhang and G. V. W. Johnson, “Tau protein is hyperphosphorylated in a site-specific manner in apoptotic neuronal PC12 cells,” Journal of Neurochemistry, vol. 75, no. 6, pp. 2346–2357, 2000. View at Publisher · View at Google Scholar
  17. Q. Zhang, H. S. Ahuja, Z. Zakeri, and D. J. Wolgemuth, “Cyclin-dependent kinase 5 is associated with apoptotic cell death during development and tissue remodeling,” Developmental Biology, vol. 183, no. 2, pp. 222–233, 1997. View at Publisher · View at Google Scholar
  18. Z. H. Cheung, A. K. Y. Fu, and N. Y. Ip, “Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases,” Neuron, vol. 50, no. 1, pp. 13–18, 2006. View at Publisher · View at Google Scholar
  19. T. Sandal, C. Stapnes, H. Kleivdal, L. Hedin, and S. O. Døskeland, “A novel, extraneuronal role for cyclin-dependent protein kinase 5 (CDK5): modulation of cAMP-induced apoptosis in rat leukemia cells,” The Journal of Biological Chemistry, vol. 277, no. 23, pp. 20783–20793, 2002. View at Publisher · View at Google Scholar
  20. Y. Zhu, L. Lin, S. Kim, D. Quaglino, R. A. Lockshin, and Z. Zakeri, “Cyclin dependent kinase 5 and its interacting proteins in cell death induced in vivo by cyclophosphamide in developing mouse embryos,” Cell Death and Differentiation, vol. 9, no. 4, pp. 421–430, 2002. View at Publisher · View at Google Scholar
  21. J. L. Rosales and K.-Y. Lee, “Extraneuronal roles of cyclin-dependent kinase 5,” BioEssays, vol. 28, no. 10, pp. 1023–1034, 2006. View at Publisher · View at Google Scholar
  22. A. K. Upadhyay, A. K. Ajay, S. Singh, and M. K. Bhat, “Cell cycle regulatory protein 5 (cdk5) is a novel downstream target of ERK in carboplatin induced death of breast cancer cells,” Current Cancer Drug Targets, vol. 8, no. 8, pp. 741–752, 2008. View at Publisher · View at Google Scholar
  23. H. S. Ahuja, W. James, and Z. Zakeri, “Rescue of the limb deformity in hammertoe mutant mice by retinoic acid-induced cell death,” Developmental Dynamics, vol. 208, no. 4, pp. 466–481, 1997. View at Publisher · View at Google Scholar
  24. F. Gao, U. Jütting, K. Rodenacker, P. Gais, and P.-Z. Lin, “Relevance of chromatin features in the progression of esophageal epithelial severe dysplasia,” Analytical Cellular Pathology, vol. 13, no. 1, pp. 17–28, 1997.
  25. L. Lin, Y. Ye, and Z. Zakeri, “P53, Apaf-1, caspase-3, and -9 are dispensable for Cdk5 activation during cell death,” Cell Death and Differentiation, vol. 13, no. 1, pp. 141–150, 2006. View at Publisher · View at Google Scholar
  26. L. Cagnon and O. Braissant, “Role of caspases, calpain and cdk5 in ammonia-induced cell death in developing brain cells,” Neurobiology of Disease, vol. 32, no. 2, pp. 281–292, 2008. View at Publisher · View at Google Scholar
  27. M. Slevin and J. Krupinski, “Cyclin-dependent kinase-5 targeting for ischaemic stroke,” Current Opinion in Pharmacology, vol. 9, no. 2, pp. 119–124, 2009. View at Publisher · View at Google Scholar
  28. P. Paoletti, I. Vila, M. Rifé, J. M. Lizcano, J. Alberch, and S. Ginés, “Dopaminergic and glutamatergic signaling crosstalk in Huntington's disease neurodegeneration: the role of p25/cyclin-dependent kinase 5,” Journal of Neuroscience, vol. 28, no. 40, pp. 10090–10101, 2008. View at Publisher · View at Google Scholar
  29. L.-H. Teai, I. Delalle, V. S. Cavness Jr., T. Chae, and E. Harlow, “p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5,” Nature, vol. 371, no. 6496, pp. 419–423, 1994. View at Publisher · View at Google Scholar
  30. D. Tang, J. Yeung, K.-Y. Lee, et al., “An isoform of the neuronal cyclin-dependent kinase 5 (Cdk5) activator,” The Journal of Biological Chemistry, vol. 270, no. 45, pp. 26897–26903, 1995. View at Publisher · View at Google Scholar
  31. R. Donnellan and R. Chetty, “Cyclin E in human cancers,” The FASEB Journal, vol. 13, no. 8, pp. 773–780, 1999.
  32. A. Dinarina, L. H. Perez, A. Davila, M. Schwab, T. Hunt, and A. R. Nebreda, “Characterization of a new family of cyclin-dependent kinase activators,” Biochemical Journal, vol. 386, no. 2, pp. 349–355, 2005.
  33. D. I. Orellana, R. A. Quintanilla, and R. B. Maccioni, “Neuroprotective effect of TNFα against the β-amyloid neurotoxicity mediated by CDK5 kinase,” Biochimica et Biophysica Acta, vol. 1773, no. 2, pp. 254–263, 2007. View at Publisher · View at Google Scholar
  34. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar
  35. K.-H. Sun, Y. de Pablo, F. Vincent, and K. Shah, “Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction,” Journal of Neurochemistry, vol. 107, no. 1, pp. 265–278, 2008. View at Publisher · View at Google Scholar
  36. E. J. Morris, E. Keramaris, H. J. Rideout, et al., “Cyclin-dependent kinases and p53 pathways are activated independently and mediate Bax activation in neurons after DNA damage,” Journal of Neuroscience, vol. 21, no. 14, pp. 5017–5026, 2001.
  37. A. R. Nebreda, “CDK activation by non-cyclin proteins,” Current Opinion in Cell Biology, vol. 18, no. 2, pp. 192–198, 2006. View at Publisher · View at Google Scholar
  38. T. Hayashi, M. Sakurai, K. Abe, and Y. Itoyama, “DNA fragmentation precedes aberrant expression of cell cycle-related protein in rat brain after MCA occlusion,” Neurological Research, vol. 21, no. 7, pp. 695–698, 1999.
  39. B.-S. Li, L. Zhang, S. Takahashi, et al., “Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3,” The EMBO Journal, vol. 21, no. 3, pp. 324–333, 2002. View at Publisher · View at Google Scholar
  40. J. H. Weishaupt, L. Kussmaul, P. Grötsch, et al., “Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction,” Molecular and Cellular Neuroscience, vol. 24, no. 2, pp. 489–502, 2003. View at Publisher · View at Google Scholar