About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2009 (2009), Article ID 932961, 7 pages
http://dx.doi.org/10.1155/2009/932961
Research Article

Immunohistochemical Localisation of PDE5 in Rat Lung during Pre- and Postnatal Development

1Department of Cellular and Developmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
2Department of Basic and Applied Biology, University of L'Aquila, Via Vetoio 10, 67010 L'Aquila, Italy

Received 31 March 2009; Accepted 18 June 2009

Academic Editor: Richard Tucker

Copyright © 2009 Angela Scipioni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. Soderling and J. A. Beavo, “Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions,” Current Opinion in Cell Biology, vol. 12, no. 2, pp. 174–179, 2000. View at Publisher · View at Google Scholar
  2. T. M. Lincoln, C. L. Hall, C. Park, and J. D. Corbin, “Guanosine 3:5 cyclic monophosphate binding proteins in rat tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 73, no. 8, pp. 2559–2563, 1976. View at Google Scholar
  3. J. F. Coquil, G. Brunelle, and J. Guedon, “Occurrence of the methylisobutylxanthine-stimulated cyclic GMP binding protein in various rat tissues,” Biochemical and Biophysical Research Communications, vol. 127, no. 1, pp. 226–231, 1985. View at Google Scholar
  4. J. D. Corbin, A. Beasley, M. A. Blount, and S. H. Francis, “High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors,” Biochemical and Biophysical Research Communications, vol. 334, no. 3, pp. 930–938, 2005. View at Publisher · View at Google Scholar · View at PubMed
  5. A. Sebkhi, J. W. Strange, S. C. Phillips, J. Wharton, and M. R. Wilkins, “Phosphodiesterase type 5 as a target for the treatment of hypoxia-induced pulmonary hypertension,” Circulation, vol. 107, no. 25, pp. 3230–3235, 2003. View at Publisher · View at Google Scholar · View at PubMed
  6. M. R. Maclean, E. D. Johnston, K. M. Mcculloch, L. Pooley, M. D. Houslay, and G. Sweeney, “Phosphodiesterase isoforms in the pulmonary arterial circulation of the rat: changes in pulmonary hypertension,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, no. 2, pp. 619–624, 1997. View at Google Scholar
  7. O. Pauvert, S. Bonnet, E. Rousseau, R. Marthan, and J.-P. Savineau, “Sildenafil alters calcium signaling and vascular tone in pulmonary arteries from chronically hypoxic rats,” American Journal of Physiology, vol. 287, no. 3, pp. L577–L583, 2004. View at Publisher · View at Google Scholar · View at PubMed
  8. M. K. Steiner, I. R. Preston, J. R. Klinger, and N. S. Hill, “Pulmonary hypertension: inhaled nitric oxide, sildenafil and natriuretic peptides,” Current Opinion in Pharmacology, vol. 5, no. 3, pp. 245–250, 2005. View at Publisher · View at Google Scholar · View at PubMed
  9. N. Kawai, D. B. Bloch, G. Filippov, et al., “Constitutive endothelial nitric oxide synthase gene expression is regulated during lung development,” American Journal of Physiology, vol. 268, no. 4, pp. L589–L595, 1995. View at Google Scholar
  10. K. D. Bloch, G. Filippov, L. S. Sanchez, M. Nakane, and S. M. de La Monte, “Pulmonary soluble guanylate cyclase, a nitric oxide receptor, is increased during the perinatal period,” American Journal of Physiology, vol. 272, no. 3, pp. L400–L406, 1997. View at Google Scholar
  11. K. A. Hanson, F. Burns, S. D. Rybalkin, J. W. Miller, J. Beavo, and W. R. Clarke, “Developmental changes in lung cGMP phosphodiesterase-5 activity, protein, and message,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 1, pp. 279–288, 1998. View at Google Scholar
  12. L. S. Sanchez, S. M. de la Monte, G. Filippov, R. C. Jones, W. M. Zapol, and K. D. Bloch, “Cyclic-GMP-binding, cyclic-GMP-specific phosphodiesterase (PDE5) gene expression is regulated during rat pulmonary development,” Pediatric Research, vol. 43, no. 2, pp. 163–168, 1998. View at Google Scholar
  13. S. M. Black, L. S. Sanchez, E. Mata-Greenwood, J. M. Bekker, R. H. Steinhorn, and J. R. Fineman, “sGC and PDE5 are elevated in lambs with increased pulmonary blood flow and pulmonary hypertension,” American Journal of Physiology, vol. 281, no. 5, pp. L1051–L1057, 2001. View at Google Scholar
  14. K. A. Hanson, J. W. Ziegler, S. D. Rybalkin, J. W. Miller, S. H. Abman, and W. R. Clarke, “Chronic pulmonary hypertension increases fetal lung cGMP phosphodiesterase activity,” American Journal of Physiology, vol. 275, no. 5, pp. L931–L941, 1998. View at Google Scholar
  15. J. Weimann, R. Ullrich, J. Hromi, et al., “Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension,” Anesthesiology, vol. 92, no. 6, pp. 1702–1712, 2000. View at Google Scholar
  16. F. Ichinose, J. Erana-Garcia, J. Hromi, et al., “Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension,” Critical Care Medicine, vol. 29, no. 5, pp. 1000–1005, 2001. View at Google Scholar
  17. F. Ladha, S. Bonnet, F. Eaton, K. Hashimoto, G. Korbutt, and B. Thébaud, “Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 6, pp. 750–756, 2005. View at Publisher · View at Google Scholar · View at PubMed
  18. J. N. Travadi and S. K. Patole, “Phosphodiesterase inhibitors for persistent pulmonary hypertension of the newborn: a review,” Pediatric Pulmonology, vol. 36, no. 6, pp. 529–535, 2003. View at Publisher · View at Google Scholar · View at PubMed
  19. J. Kotera, N. Yanaka, K. Fujishige, et al., “Expression of rat cGMP-binding cGMP-specific phosphodiesterase mRNA in Purkinje cell layers during postnatal neuronal development,” European Journal of Biochemistry, vol. 249, no. 2, pp. 434–442, 1997. View at Google Scholar
  20. J. Kotera, K. Fujishige, and K. Omori, “Immunohistochemical localization of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in rat tissues,” Journal of Histochemistry and Cytochemistry, vol. 48, no. 5, pp. 685–693, 2000. View at Google Scholar
  21. D. Giordano, M. E. De Stefano, G. Citro, A. Modica, and M. Giorgi, “Expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in mouse tissues and cell lines using an antibody against the enzyme amino-terminal domain,” Biochimica et Biophysica Acta, vol. 1539, no. 1-2, pp. 16–27, 2001. View at Publisher · View at Google Scholar
  22. J. Wharton, J. W. Strange, G. M. O. Møller, et al., “Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 1, pp. 105–113, 2005. View at Publisher · View at Google Scholar · View at PubMed
  23. K. N. Farrow, B. S. Groh, P. T. Schumacker, et al., “Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells,” Circulation Research, vol. 102, no. 2, pp. 226–233, 2008. View at Publisher · View at Google Scholar · View at PubMed
  24. J. C. Adams, “Biotin amplification of biotin and horseradish peroxidase signals in histochemical stains,” Journal of Histochemistry and Cytochemistry, vol. 40, no. 10, pp. 1457–1463, 1992. View at Google Scholar
  25. C. S. Lin, A. Lau, R. Tu, and T. F. Lue, “Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in human penile cavernosum,” Biochemical and Biophysical Research Communications, vol. 268, pp. 628–635, 2000. View at Google Scholar
  26. O. Lowry, N. J. Rosembrough, A. R. Farr, and R. J. Randall, “Protein measurement with the folin phenol reagent,” Journal of Biological Chemistry, vol. 193, pp. 265–275, 1951. View at Google Scholar
  27. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar
  28. H. Towbin, T. Staehelin, and J. Gordon, “Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 9, pp. 4350–4354, 1979. View at Google Scholar
  29. F. Shalaby, J. Rossant, T. P. Yamaguchi, et al., “Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice,” Nature, vol. 376, no. 6535, pp. 62–66, 1995. View at Google Scholar
  30. A. J. Bhatt, S. B. Amin, P. R. Chess, R. H. Watkins, and W. M. Maniscalco, “Expression of vascular endothelial growth factor and Flk-1 in developing and glucocorticoid-treated mouse lung,” Pediatric Research, vol. 47, no. 5, pp. 606–613, 2000. View at Google Scholar
  31. Y.-S. Ng, R. Rohan, M. E. Sunday, D. E. Demello, and P. A. D'Amore, “Differential expression of VEGF isoforms in mouse during development and in the adult,” Developmental Dynamics, vol. 220, no. 2, pp. 112–121, 2001. View at Publisher · View at Google Scholar
  32. B.-Q. Shen, D. Y. Lee, and T. F. Zioncheck, “Vascular endothelial growth factor governs endothelial nitric-oxide synthase expression via a KDR/Flk-1 receptor and a protein kinase C signaling pathway,” Journal of Biological Chemistry, vol. 274, no. 46, pp. 33057–33063, 1999. View at Publisher · View at Google Scholar
  33. D. Fukumura, T. Gohongi, A. Kadambi, et al., “Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 5, pp. 2604–2609, 2001. View at Publisher · View at Google Scholar · View at PubMed
  34. M. Yamada, H. Kurihara, K. Kinoshita, and T. Sakai, “Temporal expression of alpha-smooth muscle actin and drebrin in septal interstitial cells during alveolar maturation,” Journal of Histochemistry and Cytochemistry, vol. 53, no. 6, pp. 735–744, 2005. View at Publisher · View at Google Scholar · View at PubMed
  35. V. Nehls and D. Drenckhahn, “Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin,” The Journal of Cell Biology, vol. 113, pp. 147–154, 1991. View at Google Scholar
  36. Y. Kapanci, C. Ribaux, C. Chaponnier, and G. Gabbiani, “Cytoskeletal features of alveolar myofibroblasts and pericytes in normal human and rat lung,” Journal of Histochemistry and Cytochemistry, vol. 40, no. 12, pp. 1955–1963, 1992. View at Google Scholar
  37. Y. Kapanci, A. Desmouliere, J.-C. Pache, M. Redard, and G. Gabbiani, “Cytoskeletal protein modulation in pulmonary alveolar myofibroblasts during idiopathic pulmonary fibrosis: possible role of transforming growth factor beta and tumor necrosis factor alpha,” American Journal of Respiratory and Critical Care Medicine, vol. 152, no. 6, pp. 2163–2169, 1995. View at Google Scholar
  38. H.-Y. Zhang, M. Gharaee-Kermani, K. Zhang, S. Karmiol, and S. H. Phan, “Lung fibroblast α-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis,” American Journal of Pathology, vol. 148, no. 2, pp. 527–537, 1996. View at Google Scholar
  39. K. Jostarndt-Fögen, V. Djonov, and A. Draeger, “Expression of smooth muscle markers in the developing murine lung: potential contractile properties and lineal descent,” Histochemistry and Cell Biology, vol. 110, no. 3, pp. 273–284, 1998. View at Publisher · View at Google Scholar
  40. E. Shimizu, Y. Kobayashi, Y. Oki, T. Kawasaki, T. Yoshimi, and H. Nakamura, “OPC-13013, a cyclic nucleotide phosphodiesterase type III inhibitor, inhibits cell proliferation and transdifferentiation of cultured rat hepatic stellate cells,” Life Sciences, vol. 64, no. 23, pp. 2081–2088, 1999. View at Publisher · View at Google Scholar
  41. T. D. Hewitson, M. Martic, K. J. Kelynack, E. Pedagogos, and G. J. Becker, “Pentoxifylline reduces in vitro renal myofibroblast proliferation and collagen secretion,” American Journal of Nephrology, vol. 20, no. 1, pp. 82–88, 2000. View at Google Scholar
  42. D. Schuppan and Y. Porov, “Hepatic fibrosis: from bench to bedside,” Journal of Gastroenterology and Hepatology, vol. 17, supplement 3, pp. S300–S305, 2002. View at Publisher · View at Google Scholar
  43. Y. Kapanci and G. Gabbiani, “Contractile cells in pulmonary alveolar tissue,” in The Lung: Scientific Foundations, R. G. Crystal, J. B. West, E. R. Weibel, and P. J. Barnes, Eds., pp. 697–707, Lippincott-Raven, Philadelphia, Pa, USA, 1997. View at Google Scholar
  44. E. R. Weibel and R. G. Crystal, “Structural organization of the pulmonary interstitium,” in The Lung: Scientific Foundations, R. G. Crystal, J. B. West, E. R. Weibel, and P. J. Barnes, Eds., pp. 685–695, Lippincott-Raven, Philadelphia, Pa, USA, 1997. View at Google Scholar