About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 104918, 10 pages
http://dx.doi.org/10.1155/2010/104918
Review Article

Cytotoxic T Cells in H. pylori-Related Gastric Autoimmunity and Gastric Lymphoma

1Section Molecular Microbiology, Department of Molecular Cell Biology, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
2Department of Internal Medicine, University of Florence, viale Morgagni 85, 50134 Florence, Italy

Received 18 January 2010; Accepted 28 April 2010

Academic Editor: Gad Frankel

Copyright © 2010 Mathijs P. Bergman and Mario M. D'Elios. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Linz, F. Balloux, and F. Balloux, “An African origin for the intimate association between humans and Helicobacter pylori,” Nature, vol. 445, no. 7130, pp. 915–918, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. J. C. Atherton, “The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases,” Annual Review of Pathology, vol. 1, pp. 63–96, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. D. S. Merrell and S. Falkow, “Frontal and stealth attack strategies in microbial pathogenesis,” Nature, vol. 430, no. 6996, pp. 250–256, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. J. G. Kusters, A. H. M. van Vliet, and E. J. Kuipers, “Pathogenesis of Helicobacter pylori infection,” Clinical Microbiology Reviews, vol. 19, no. 3, pp. 449–490, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. J. Viala, C. Chaput, and C. Chaput, “Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island,” Nature Immunology, vol. 5, no. 11, pp. 1166–1174, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. H. Isomoto, H. Mukae, and H. Mukae, “Elevated concentrations of α-defensins in gastric juice of patients with Helicobacter pylori infection,” American Journal of Gastroenterology, vol. 99, no. 10, pp. 1916–1923, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. S.-Z. Ding, A. M. Torok, M. F. Smith Jr., and J. B. Goldberg, “Toll-like receptor 2-mediated gene expression in epithelial cells during Helicobacter pylori infection,” Helicobacter, vol. 10, no. 3, pp. 193–204, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. T. Gewirtz, Y. Yu, U. S. Krishna, D. A. Israel, S. L. Lyons, and R. M. Peek Jr., “Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity,” The Journal of Infectious Diseases, vol. 189, no. 10, pp. 1914–1920, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. Ishihara, M. A. K. Rumi, and M. A. K. Rumi, “Essential role of MD-2 in TLR4-dependent signaling during Helicobacter pylori-associated gastritis,” The Journal of Immunology, vol. 173, no. 2, pp. 1406–1416, 2004. View at Scopus
  10. A. M. Torok, A. H. Bouton, and J. B. Goldberg, “Helicobacter pylori induces interleukin-8 secretion by Toll-like receptor 2- and Toll-like receptor 5-dependent and -independent pathways,” Infection and Immunity, vol. 73, no. 3, pp. 1523–1531, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. R. A. M. H. van Aubel, A. M. Keestra, D. J. E. B. Krooshoop, W. van Eden, and J. P. M. van Putten, “Ligand-induced differential cross-regulation of Toll-like receptors 2, 4 and 5 in intestinal epithelial cells,” Molecular Immunology, vol. 44, no. 15, pp. 3702–3714, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. K. Robinson, R. H. Argent, and J. C. Atherton, “The inflammatory and immune response to Helicobacter pylori infection,” Best Practice & Research: Clinical Gastroenterology, vol. 21, no. 2, pp. 237–259, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. K. A. Roth, S. B. Kapadia, S. M. Martin, and R. G. Lorenz, “Cellular immune responses are essential for the development of Helicobacter felis-associated gastric pathology,” The Journal of Immunology, vol. 163, no. 3, pp. 1490–1497, 1999. View at Scopus
  14. J. M. Gottwein, T. G. Blanchard, and T. G. Blanchard, “Protective anti-Helicobacter immunity is induced with aluminum hydroxide or complete Freund's adjuvant by systemic immunization,” The Journal of Infectious Diseases, vol. 184, no. 3, pp. 308–314, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. P. F. Saldinger, N. Porta, and N. Porta, “Immunization of BALB/c mice with Helicobacter urease B induces a T helper 2 response absent in Helicobacter infection,” Gastroenterology, vol. 115, no. 4, pp. 891–897, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. A. A. Akhiani, J. Pappo, Z. Kabok, K. Schön, W. Gao, L. E. Franzén, and N. Lycke, “Protection against Helicobacter pylori infection following immunization is IL-12-dependent and mediated by Th1 cells,” The Journal of Immunology, vol. 169, no. 12, pp. 6977–6984, 2002. View at Scopus
  17. C. A. Garhart, F. P. Heinzel, S. J. Czinn, and J. G. Nedrud, “Vaccine-induced reduction of Helicobacter pylori colonization in mice is interleukin-12 dependent but gamma interferon and inducible nitric oxide synthase independent,” Infection and Immunity, vol. 71, no. 2, pp. 910–921, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. M. D'Elios, M. Manghetti, and M. Manghetti, “T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease,” The Journal of Immunology, vol. 158, no. 2, pp. 962–967, 1997. View at Scopus
  19. F. Sommer, G. Faller, and G. Faller, “Antrum- and corpus mucosa-infiltrating CD4+ lymphocytes in Helicobacter pylori gastritis display a Th1 phenotype,” Infection and Immunity, vol. 66, no. 11, pp. 5543–5546, 1998. View at Scopus
  20. M. M. D'Elios, M. Manghetti, and M. Manghetti, “Different cytokine profile and antigen-specificity repertoire in Helicobacter pylori-specific T cell clones from the antrum of chronic gastritis patients with or without peptic ulcer,” European Journal of Immunology, vol. 27, no. 7, pp. 1751–1755, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. R. M. Steinman and J. Banchereau, “Taking dendritic cells into medicine,” Nature, vol. 449, no. 7161, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. N. Hafsi, P. Voland, S. Schwendy, R. Rad, W. Reindl, M. Gerhard, and C. Prinz, “Human dendritic cells respond to Helicobacter pylori, promoting NK cell and Th1-effector responses in vitro,” The Journal of Immunology, vol. 173, no. 2, pp. 1249–1257, 2004. View at Scopus
  23. K. Kranzer, L. Söllner, M. Aigner, N. Lehn, L. Demi, M. Rehli, and W. Schneider-Brachert, “Impact of Helicobacter pylori virulence factors and compounds on activation and maturation of human dendritic cells,” Infection and Immunity, vol. 73, no. 7, pp. 4180–4189, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. K. B. Bamford, X. Fan, and X. Fan, “Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype,” Gastroenterology, vol. 114, no. 3, pp. 482–492, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Amedei, A. Cappon, and A. Cappon, “The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses,” Journal of Clinical Investigation, vol. 116, no. 4, pp. 1092–1101, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. R. de Jonge, E. J. Kuipers, S. C. L. Langeveld, R. J. L. F. Loffeld, J. Stoof, A. H. M. van Vliet, and J. G. Kusters, “The Helicobacter pylori plasticity region locus jhp0947-jhp0949 is associated with duodenal ulcer disease and interleukin-12 production in monocyte cells,” FEMS Immunology and Medical Microbiology, vol. 41, no. 2, pp. 161–167, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. Robinson, M. F. Loughlin, R. Potter, and P. J. Jenks, “Host adaptation and immune modulation are mediated by homologous recombination in Helicobacter pylori,” The Journal of Infectious Diseases, vol. 191, no. 4, pp. 579–587, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. P. Bergman, A. Engering, and A. Engering, “Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN,” The Journal of Experimental Medicine, vol. 200, no. 8, pp. 979–990, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. F. S. Lehmann, L. Terracciano, and L. Terracciano, “In situ correlation of cytokine secretion and apoptosis in Helicobacter pylori-associated gastritis,” American Journal of Physiology, vol. 283, no. 2, pp. G481–G488, 2002. View at Scopus
  30. S. Wen, C. P. Felley, H. Bouzourene, M. Reimers, P. Michetti, and Q. Pan-Hammarström, “Inflammatory gene profiles in gastric mucosa during Helicobacter pylori infection in humans,” The Journal of Immunology, vol. 172, no. 4, pp. 2595–2606, 2004. View at Scopus
  31. A. Pellicanò, L. Sebkova, G. Monteleone, G. Guarnieri, M. Imeneo, F. Pallone, and F. Luzza, “Interleukin-12 drives the Th1 signaling pathway in Helicobacter pylori-infected human gastric mucosa,” Infection and Immunity, vol. 75, no. 4, pp. 1738–1744, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. C. Holcombe, “Helicobacter pylori: the African enigma,” Gut, vol. 33, no. 4, pp. 429–431, 1992. View at Scopus
  33. J. G. Fox, P. Beck, C. A. Dangler, M. T. Whary, T. C. Wang, H. N. Shi, and C. Nagler-Anderson, “Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces Helicobacter-induced gastric atrophy,” Nature Medicine, vol. 6, no. 5, pp. 536–542, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. S. Raghavan and J. Holmgren, “CD4+CD25+ suppressor T cells regulate pathogen induced inflammation and disease,” FEMS Immunology and Medical Microbiology, vol. 44, no. 2, pp. 121–127, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. Raghavan, M. Fredriksson, A.-M. Svennerholm, J. Holmgren, and E. Suri-Payer, “Absence of CD4+CD25+ regulatory T cells is associated with a loss of regulation leading to increased pathology in Helicobacter pylori-infected mice,” Clinical and Experimental Immunology, vol. 132, no. 3, pp. 393–400, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Raghavan, E. Suri-Payer, and J. Holmgren, “Antigen-specific in vitro suppression of murine Helicobacter pylori-reactive immunopathological T cells by CD4+CD25+ regulatory T cells,” Scandinavian Journal of Immunology, vol. 60, no. 1, pp. 82–88, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. R. Rad, L. Brenner, and L. Brenner, “CD25+/FOXP3+ T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo,” Gastroenterology, vol. 131, no. 2, pp. 525–537, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. K. M. Anderson, S. J. Czinn, R. W. Redline, and T. G. Blanchard, “Induction of CTLA-4-mediated anergy contributes to persistent colonization in the murine model of gastric Helicobacter pylori infection,” The Journal of Immunology, vol. 176, no. 9, pp. 5306–5313, 2006. View at Scopus
  39. P. R. Harris, S. W. Wright, and S. W. Wright, “Helicobacter pylori gastritis in children is associated with a regulatory T-cell response,” Gastroenterology, vol. 134, no. 2, pp. 491–499, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. K. A. Stuller, H. Ding, R. W. Redline, S. J. Czinn, and T. G. Blanchard, “CD25+ T cells induce Helicobacter pylori-specific CD25 T-cell anergy but are not required to maintain persistent hyporesponsiveness,” European Journal of Immunology, vol. 38, no. 12, pp. 3426–3436, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. A. Kandulski, T. Wex, D. Kuester, U. Peitz, I. Gebert, A. Roessner, and P. Malfertheiner, “Naturally occurring regulatory T cells (CD4+, CD25 high, FOXP3+) in the antrum and cardia are associated with higher H. pylori colonization and increased gene expression of TGF-β1,” Helicobacter, vol. 13, no. 4, pp. 295–303, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. B. Kindlund, A. Sjöling, and A. Sjöling, “FOXP3-expressing CD4+ T-cell numbers increase in areas of duodenal gastric metaplasia and are associated to CD4+ T-cell aggregates in the duodenum of Helicobacter pylori-infected duodenal ulcer patients,” Helicobacter, vol. 14, no. 3, pp. 192–201, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. K. Robinson, R. Kenefeck, and R. Kenefeck, “Helicobacter pylori-induced peptic ulcer disease is associated with inadequate regulatory T cell responses,” Gut, vol. 57, no. 10, pp. 1375–1385, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. M. Yazdanbakhsh, P. G. Kremsner, and R. van Ree, “Immunology: allergy, parasites, and the hygiene hypothesis,” Science, vol. 296, no. 5567, pp. 490–494, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. M. M. D'Elios, B. J. Appelmelk, A. Amedei, M. P. Bergman, and G. Del Prete, “Gastric autoimmunity: the role of Helicobacter pylori and molecular mimicry,” Trends in Molecular Medicine, vol. 10, no. 7, pp. 316–323, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. B.-H. Toh, I. R. van Driel, and P. A. Gleeson, “Mechanisms of disease: pernicious anemia,” New England Journal of Medicine, vol. 337, no. 20, pp. 1441–1448, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. M. P. Bergman, C. M. J. E. vandenbroucke-Grauls, and C. M. J. E. vandenbroucke-Grauls, “The story so far: Helicobacter pylori and gastric autoimmunity,” International Reviews of Immunology, vol. 24, no. 1-2, pp. 63–91, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. M. Stolte, K. Baumann, B. Bethke, M. Ritter, E. Lauer, and H. Eidt, “Active autoimmune gastritis withouth total atrophy of the glands,” Zeitschrift für Gastroenterologie, vol. 30, no. 10, pp. 729–735, 1992. View at Scopus
  49. M. Stolte, E. Meier, and A. Meining, “Cure of autoimmune gastritis by Helicobacter pylori eradication in a 21-year-old male,” Zeitschrift für Gastroenterologie, vol. 36, no. 8, pp. 641–643, 1998. View at Scopus
  50. A. Tucci, L. Poli, and L. Poli, “Reversal of fundic atrophy after eradication of Helicobacter pylori,” American Journal of Gastroenterology, vol. 93, no. 9, pp. 1425–1431, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. G. Faller, H. Steininger, M. Eck, J. Hensen, E. G. Hahn, and T. Kirchner, “Antigastric autoantibodies in Helicobacter pylori gastritis: prevalence, in-situ binding sites and clues for clinical relevance,” Virchows Archiv, vol. 427, no. 5, pp. 483–486, 1996. View at Scopus
  52. G. Faller, H. Steininger, and H. Steininger, “Antigastric autoantibodies in Helicobacter pylori infection: implications of histological and clinical parameters of gastritis,” Gut, vol. 41, no. 5, pp. 619–623, 1997. View at Scopus
  53. R. Negrini, L. Lisato, and L. Lisato, “Helicobacter pylori infection induces antibodies cross-reacting with human gastric mucosa,” Gastroenterology, vol. 101, no. 2, pp. 437–445, 1991. View at Scopus
  54. R. Negrini, A. Savio, and A. Savio, “Antigenic mimicry between Helicobacter pylori and gastric mucosa in the pathogenesis of body atrophic gastritis,” Gastroenterology, vol. 111, no. 3, pp. 655–665, 1996. View at Scopus
  55. H. Steininger, G. Faller, E. Dewald, T. Brabletz, A. Jung, and T. Kirchner, “Apoptosis in chronic gastritis and its correlation with antigastric autoantibodies,” Virchows Archiv, vol. 433, no. 1, pp. 13–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. B.-H. Toh, J. W. Sentry, and F. Alderuccio, “The causative H+/K+ ATPase antigen in the pathogenesis of autoimmune gastritis,” Immunology Today, vol. 21, no. 7, pp. 348–354, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Claeys, G. Faller, B. J. Appelmelk, R. Negrini, and T. Kirchner, “The gastric H+,K+-ATPase is a major autoantigen in chronic Helicobacter pylori gastritis with body mucosa atrophy,” Gastroenterology, vol. 115, no. 2, pp. 340–347, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. B. J. Appelmelk, G. Faller, D. Claeys, T. Kirchner, and C. M. J. E. vandenbroucke-Grauls, “Bugs on trial: the case of Helicobacter pylori and autoimmunity,” Immunology Today, vol. 19, no. 7, pp. 296–299, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Amedei, M. P. Bergman, and M. P. Bergman, “Molecular mimicry between Helicobacter pylori antigens and H+,K+-adenosine triphosphatase in human gastric autoimmunity,” The Journal of Experimental Medicine, vol. 198, no. 8, pp. 1147–1156, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. F. Alderuccio, J. W. Sentry, A. C. J. Marshall, M. Biondo, and B. H. Toh, “Animal models of human disease: experimental autoimmune gastritis—a model for autoimmune gastritis and pernicious anemia,” Clinical Immunology, vol. 102, no. 1, pp. 48–58, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. R. S. McHugh, E. M. Shevach, D. H. Margulies, and K. Natarajan, “A T cell receptor transgenic model of severe, spontaneous organ-specific autoimmunity,” European Journal of Immunology, vol. 31, no. 7, pp. 2094–2103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. P. Burman, O. Kampe, W. Kraaz, L. Loof, A. Smolka, A. Karlsson, and A. Karlsson-Parra, “A study of autoimmune gastritis in the postpartum period and at a 5-year follow-up,” Gastroenterology, vol. 103, no. 3, pp. 934–942, 1992. View at Scopus
  63. T. M. Martinelli, I. R. van Driel, F. Alderuccio, P. A. Gleeson, and B.-H. Toh, “Analysis of mononuclear cell infiltrate and cytokine production in murine autoimmune gastritis,” Gastroenterology, vol. 110, no. 6, pp. 1791–1802, 1996. View at Publisher · View at Google Scholar · View at Scopus
  64. H. D. de Silva, I. R. van Driel, N. La Gruta, B. H. Toh, and P. A. Gleeson, “CD4+ T cells, but not CD8+ T cells, are required for the development of experimental autoimmune gastritis,” Immunology, vol. 93, no. 3, pp. 405–408, 1998. View at Publisher · View at Google Scholar · View at Scopus
  65. H. D. de Silva, P. A. Gleeson, B. H. Toh, I. R. van Driel, and F. R. Carbone, “Identification of a gastritogenic epitope of the H/K ATPase β-subunit,” Immunology, vol. 96, no. 1, pp. 145–151, 1999. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Nishio, M. Hosono, Y. Watanabe, M. Sakai, M. Okuma, and T. Masuda, “A conserved epitope on H+,K+-adenosine triphosphatase of parietal cells discerned by a murine gastritogenic T-cell clone,” Gastroenterology, vol. 107, no. 5, pp. 1408–1414, 1994. View at Scopus
  67. E. Suri-Payer, A. Z. Amar, R. McHugh, K. Natarajan, D. H. Margulies, and E. M. Shevach, “Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase-reactive T cells,” European Journal of Immunology, vol. 29, no. 2, pp. 669–677, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. M. M. D'Elios, M. P. Bergman, and M. P. Bergman, “H+,K+-ATPase (proton pump) is the target autoantigen of Th1-type cytotoxic T cells in autoimmune gastritis,” Gastroenterology, vol. 120, no. 2, pp. 377–386, 2001. View at Scopus
  69. M. P. Bergman, A. Amedei, and A. Amedei, “Characterization of H+,K+-ATPase T cell epitopes in human autoimmune gastritis,” European Journal of Immunology, vol. 33, no. 2, pp. 539–545, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. D. Levin, R. J. DiPaolo, and R. J. DiPaolo, “Availability of autoantigenic epitopes controls phenotype, severity, and penetrance in TCR Tg autoimmune gastritis,” European Journal of Immunology, vol. 38, no. 12, pp. 3339–3353, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. G. H. Stummvoll, R. J. DiPaolo, E. N. Huter, T. S. Davidson, D. Glass, J. M. Ward, and E. M. Shevach, “Th1, Th2, and Th17 effector T cell-induced autoimmune gastritis differs in pathological pattern and in susceptibility to suppression by regulatory T cells,” The Journal of Immunology, vol. 181, no. 3, pp. 1908–1916, 2008. View at Scopus
  72. S. P. Barrett, P. A. Gleeson, H. de Silva, B.-H. Toh, and I. R. van Driel, “Interferon-γ is required during the initiation of an organ-specific autoimmune disease,” European Journal of Immunology, vol. 26, no. 7, pp. 1652–1655, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. T. Katakai, K. J. Mori, T. Masuda, and A. Shimizu, “Differential localization of Th1 and Th2 cells in autoimmune gastritis,” International Immunology, vol. 10, no. 9, pp. 1325–1334, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. R. J. DiPaolo, C. Brinster, T. S. Davidson, J. Andersson, D. Glass, and E. M. Shevach, “Autoantigen-specific TGFβ-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells,” The Journal of Immunology, vol. 179, no. 7, pp. 4685–4693, 2007. View at Scopus
  75. I. I. Ivanov, K. Atarashi, and K. Atarashi, “Induction of intestinal Th17 cells by segmented filamentous bacteria,” Cell, vol. 139, no. 3, pp. 485–498, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. M. C. Kullberg, D. Jankovic, and D. Jankovic, “IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis,” The Journal of Experimental Medicine, vol. 203, no. 11, pp. 2485–2494, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. J. Houghton, L. S. Macera-Bloch, L. Harrison, K. H. Kim, and R. M. Korah, “Tumor necrosis factor alpha and interleukin 1β up-regulate gastric mucosal Fas antigen expression in Helicobacter pylori infection,” Infection and Immunity, vol. 68, no. 3, pp. 1189–1195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Wang, X. Fan, and X. Fan, “Helicobacter pylori modulates lymphoepithelial cell interactions leading to epithelial cell damage through Fas/Fas ligand interactions,” Infection and Immunity, vol. 68, no. 7, pp. 4303–4311, 2000. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Bergman, G. Del Prete, Y. van Kooyk, and B. Appelmelk, “Helicobacter pylori phase variation, immune modulation and gastric autoimmunity,” Nature Reviews Microbiology, vol. 4, no. 2, pp. 151–159, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. B. Ungar, J. D. Mathews, B. D. Tait, and D. C. Cowling, “HLA-DR patterns in pernicious anaemia,” British Medical Journal, vol. 282, no. 6266, pp. 768–770, 1981. View at Scopus
  81. W. E. Karnes Jr., I. M. Samloff, M. Siurala, M. Kekki, P. Sipponen, S. W. R. Kim, and J. H. Walsh, “Positive serum antibody and negative tissue staining for Helicobacter pylori in subjects with atrophic body gastritis,” Gastroenterology, vol. 101, no. 1, pp. 167–174, 1991. View at Scopus
  82. J.-Y. Ma, K. Borch, S. E. Sjostrand, L. Janzon, and S. Mardh, “Positive correlation between H,K-Adenosine triphosphatase autoantibodies and Helicobacter pylori antibodies in patients with pernicious anemia,” Scandinavian Journal of Gastroenterology, vol. 29, no. 11, pp. 961–965, 1994. View at Scopus
  83. J. O. Armitage, “A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin's lymphoma. The Non-Hodgkin's Lymphoma Classification Project,” Blood, vol. 89, no. 11, pp. 3909–3918, 1997. View at Scopus
  84. M. Q. Du, “MALT lymphoma : recent advances in aetiology and molecular genetics,” Journal of Clinical and Experimental Hematopathology, vol. 47, no. 2, pp. 31–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Isaacson and D. H. Wright, “Malignant lymphoma of mucosa-associated lymphoid tissue. A distinctive type of B-cell lymphoma,” Cancer, vol. 52, no. 8, pp. 1410–1416, 1983. View at Scopus
  86. A. C. Wotherspoon, C. Ortiz-Hidalgo, M. R. Falzon, and P. G. Isaacson, “Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma,” The Lancet, vol. 338, no. 8776, pp. 1175–1176, 1991. View at Publisher · View at Google Scholar · View at Scopus
  87. A. C. Wotherspoon, C. Doglioni, T. C. Diss, L. Pan, A. Moschini, M. de Boni, and P. G. Isaacson, “Regression of primary low-grade-B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori,” The Lancet, vol. 342, no. 8871, pp. 575–577, 1993. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Hussell, P. G. Isaacson, J. E. Crabtree, and J. Spencer, “The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori,” The Lancet, vol. 342, no. 8871, pp. 571–574, 1993. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Hussell, P. G. Isaacson, J. E. Crabtree, and J. O. Spencer, “Helicobacter pylori-specific tumour-infiltrating T cells provide contact dependent help for the growth of malignant B cells in low-grade gastric lymphoma of mucosa-associated lymphoid tissue,” The Journal of Pathology, vol. 178, no. 2, pp. 122–127, 1996. View at Scopus
  90. A. Greiner, C. Knörr, Y. Qin, W. Sebald, A. Schimpl, J. Banchereau, and H. K. Müller-Hermelink, “Low-grade B cell lymphomas of mucosa-associated lymphoid tissue (MALT-type) require CD40-mediated signaling and Th2-type cytokines for in vitro growth and differentiation,” American Journal of Pathology, vol. 150, no. 5, pp. 1583–1593, 1997. View at Scopus
  91. M. M. D'Elios, A. Amedei, and A. Amedei, “Impaired T-cell regulation of B-cell growth in Helicobacter pylori-related gastric low-grade MALT lymphoma,” Gastroenterology, vol. 117, no. 5, pp. 1105–1112, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. J. B. Swann and M. J. Smyth, “Immune surveillance of tumors,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1137–1146, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. J. A. Trapani and M. J. Smyth, “Functional significance of the perforin/granzyme cell death pathway,” Nature Reviews Immunology, vol. 2, no. 10, pp. 735–747, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. M. J. Smyth, K. Y. T. Thia, S. E. A. Street, D. MacGregor, D. I. Godfrey, and J. A. Trapani, “Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma,” The Journal of Experimental Medicine, vol. 192, no. 5, pp. 755–760, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. S. E. A. Street, J. A. Trapani, D. MacGregor, and M. J. Smyth, “Suppression of lymphoma and epithelial malignancies effected by interferon γ,” The Journal of Experimental Medicine, vol. 196, no. 1, pp. 129–134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. S. E. A. Street, Y. Hayakawa, and Y. Hayakawa, “Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and γδ T cells,” The Journal of Experimental Medicine, vol. 199, no. 6, pp. 879–884, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. N. Zerafa, J. A. Westwood, E. Cretney, S. Mitchell, P. Waring, M. Iezzi, and M. J. Smyth, “Cutting edge: TRAIL deficiency accelerates hematological malignancies,” The Journal of Immunology, vol. 175, no. 9, pp. 5586–5590, 2005. View at Scopus
  98. W. F. Davidson, T. Giese, and T. N. Fredrickson, “Spontaneous development of plasmacytoid tumors in mice with defective Fas-Fas ligand interactions,” The Journal of Experimental Medicine, vol. 187, no. 11, pp. 1825–1838, 1998. View at Publisher · View at Google Scholar · View at Scopus
  99. J. Liu, Z. Xiang, and X. Ma, “Role of IFN regulatory factor-1 and IL-12 in immunological resistance to pathogenesis of N-methyl-N-nitrosourea-induced T lymphoma,” The Journal of Immunology, vol. 173, no. 2, pp. 1184–1193, 2004. View at Scopus
  100. S. Mitra-Kaushik, J. Harding, J. Hess, R. Schreiber, and L. Ratner, “Enhanced tumorigenesis in HTLV-1 tax-transgenic mice deficient in interferon-gamma,” Blood, vol. 104, no. 10, pp. 3305–3311, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. S. E. A. Street, E. Cretney, and M. J. Smyth, “Perforin and interferon-γ activities independently control tumor initiation, growth, and metastasis,” Blood, vol. 97, no. 1, pp. 192–197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Clementi, F. Locatelli, L. Dupre, et al., “A proportion of patients with lymphoma may harnor mutations of the perforin gene,” Blood, vol. 105, pp. 4424–4428, 2005.
  103. M. Molinari, M. Salio, C. Galli, N. Norais, R. Rappuoli, A. Lanzavecchia, and C. Montecucco, “Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA,” The Journal of Experimental Medicine, vol. 187, no. 1, pp. 135–140, 1998. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Boncristiano, S. R. Paccani, and S. R. Paccani, “The Helicobacter pylori vacuolating toxin inhibits T cell activation by two independent mechanisms,” The Journal of Experimental Medicine, vol. 198, no. 12, pp. 1887–1897, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. P. Lehours, Z. Zheng, A. Skoglund, F. Megraud, and L. Engstrand, “Is there a link between the lipopolysaccharide of Helicobacter pylori gastric MALT lymphoma associated strains and lymphoma pathogenesis?” PLoS One, vol. 4, article e7297, 2009.
  106. P. Lehours, S. Dupouy, and S. Dupouy, “Identification of a genetic marker of Helicobacter pylori strains involved in gastric extranodal marginal zone B cell lymphoma of the MALT-type,” Gut, vol. 53, no. 7, pp. 931–937, 2004. View at Publisher · View at Google Scholar · View at Scopus