About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 109189, 13 pages
http://dx.doi.org/10.1155/2010/109189
Review Article

Leishmania Interferes with Host Cell Signaling to Devise a Survival Strategy

Lab no. 5, National Center for Cell Science, University of Pune, Ganeshkhind, Pune 411 007, India

Received 31 July 2009; Revised 21 October 2009; Accepted 28 January 2010

Academic Editor: Abhay R. Satoskar

Copyright © 2010 Suvercha Bhardwaj et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Y. Liew and C. A. O'Donnell, “Immunology of leishmaniasis,” Advances in Parasitology, vol. 32, pp. 161–259, 1993. View at Scopus
  2. N. E. Reiner, “Altered cell signaling and mononuclear phagocyte deactivation during intracellular infection,” Immunology Today, vol. 15, no. 8, pp. 374–381, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Beverley, “Hijacking the cell: parasites in the driver's seat,” Cell, vol. 87, no. 5, pp. 787–789, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Sun and N. K. Tonks, “The coordinated action of protein tyrosine phosphatases and kinases in cell signaling,” Trends in Biochemical Sciences, vol. 19, no. 11, pp. 480–485, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Hunter, “Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling,” Cell, vol. 80, no. 2, pp. 225–236, 1995. View at Scopus
  6. M. Olivier, D. J. Gregory, and G. Forget, “Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view,” Clinical Microbiology Reviews, vol. 18, no. 2, pp. 293–305, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Miga, S. Masters, M. Gonzalez, and R. J. Noelle, “The role of CD40-CD154 interactions in the regulation of cell mediated immunity,” Immunological Investigations, vol. 29, no. 2, pp. 111–114, 2000. View at Scopus
  8. C. L. Ren, T. Morio, S. M. Fu, and R. S. Geha, “Signal transduction via CD40 involves activation of lyn kinase and phosphatidylinositol-3-kinase, and phosphorylation of phospholipase Cγ2,” Journal of Experimental Medicine, vol. 179, no. 2, pp. 673–680, 1994. View at Scopus
  9. M. Kamanaka, P. Yu, T. Yasui, et al., “Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity,” Immunity, vol. 4, no. 3, pp. 275–281, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. Campbell, P. J. Ovendale, M. K. Kennedy, W. C. Fanslow, S. G. Reed, and C. R. Maliszewski, “CD40 ligand is required for protective cell-mediated immunity to Leishmania major,” Immunity, vol. 4, no. 3, pp. 283–289, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. L. C. C. Afonso, T. M. Scharton, L. Q. Vieira, M. Wysocka, G. Trinchieri, and P. Scott, “The adjuvant effect of interleukin-12 in a vaccine against Leishmania major,” Science, vol. 263, no. 5144, pp. 235–237, 1994. View at Scopus
  12. L. Soong, J. C. Xu, I. S. Grewal, et al., “Disruption of CD40-CD40 ligand interactions results in an enhanced susceptibility to Leishmania amazonensis infection,” Immunity, vol. 4, no. 3, pp. 263–273, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. R. D. Stout and J. Suttles, “The many roles of CD40 in cell-mediated inflammatory responses,” Immunology Today, vol. 17, no. 10, pp. 487–492, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Faris, F. Gaskin, J. T. Parsons, and S. M. Fu, “CD40 signaling pathway: anti-CD40 monoclonal antibody induces rapid dephosphorylation and phosphorylation of tyrosine-phosphorylated proteins including protein tyrosine kinase Lyn, Fyn, and Syk and the appearance of a 28-kD tyrosine phosphorylated protein,” Journal of Experimental Medicine, vol. 179, no. 6, pp. 1923–1931, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. C. L. Sutherland, A. W. Heath, S. L. Pelech, P. R. Young, and M. R. Gold, “Differential activation of the ERK, JNK, and p38 mitogen-activated protein kinases by CD40 and the B cell antigen receptor,” Journal of Immunology, vol. 157, no. 8, pp. 3381–3390, 1996. View at Scopus
  16. M. Kashiwada, Y. Kaneko, H. Yagita, K. Okumura, and T. Takemori, “Activation of mitogen-activated protein kinases via CD40 is distinct from that stimulated by surface IgM on B cells,” European Journal of Immunology, vol. 26, no. 7, pp. 1451–1458, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Su and M. Karin, “Mitogen-activated protein kinase cascades and regulation of gene expression,” Current Opinion in Immunology, vol. 8, no. 3, pp. 402–411, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. H. J. Schaeffer and M. J. Weber, “Mitogen-activated protein kinases: specific messages from ubiquitous messengers,” Molecular and Cellular Biology, vol. 19, no. 4, pp. 2435–2444, 1999. View at Scopus
  19. J. Han and R. J. Ulevitch, “Emerging targets for anti-inflammatory therapy,” Nature Cell Biology, vol. 1, no. 2, pp. E39–E40, 1999. View at Scopus
  20. R. J. Davis, “Signal transduction by the JNK group of MAP kinases,” Cell, vol. 103, no. 2, pp. 239–252, 2000. View at Scopus
  21. R. Seger and E. G. Krebs, “The MAPK signaling cascade,” FASEB Journal, vol. 9, no. 9, pp. 726–735, 1995. View at Scopus
  22. J. H. Her, S. Lakhani, K. Zu, et al., “Dual phosphorylation and autophosphorylation in mitogen-activated protein (MAP) kinase activation,” Biochemical Journal, vol. 296, no. 1, pp. 25–31, 1993. View at Scopus
  23. J. Raingeaud, S. Gupta, J. S. Rogers, et al., “Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine,” Journal of Biological Chemistry, vol. 270, no. 13, pp. 7420–7426, 1995. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Paul, S. Wilson, C. M. Belham, et al., “Stress-activated protein kinases: activation, regulation and function,” Cellular Signalling, vol. 9, no. 6, pp. 403–410, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Ono and J. Han, “The p38 signal transduction pathway activation and function,” Cellular Signalling, vol. 12, no. 1, pp. 1–13, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. S. J. Ajizian, B. K. English, and E. A. Meals, “Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-γ,” Journal of Infectious Diseases, vol. 179, no. 4, pp. 939–944, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. R. A. Salmon, X. Guo, H. S. Teh, and J. W. Schrader, “The p38 mitogen-activated protein kinases can have opposing roles in the antigen-dependent or endotoxin-stimulated production of IL-12 and IFN-γ,” European Journal of Immunology, vol. 31, no. 11, pp. 3218–3227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. T. G. Evans, S. S. Reed, and J. B. Hibbs Jr., “Nitric oxide production in murine leishmaniasis: correlation of progressive infection with increasing systemic synthesis of nitric oxide,” American Journal of Tropical Medicine and Hygiene, vol. 54, no. 5, pp. 486–489, 1996. View at Scopus
  29. C. Privé and A. Descoteaux, “Leishmania donovani promastigotes evade the activation of mitogen-activated protein kinases p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase-1/2 during infection of naive macrophages,” European Journal of Immunology, vol. 30, no. 8, pp. 2235–2244, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. G. J. Feng, H. S. Goodridge, M. M. Harnett, et al., “Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharide-mediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP kinase,” Journal of Immunology, vol. 163, no. 12, pp. 6403–6412, 1999. View at Scopus
  31. A. Awasthi, R. Mathur, A. Khan, et al., “CD40 signaling is impaired in L. major-infected macrophages and is rescued by a p38MAPK activator establishing a host-protective memory T cell response,” Journal of Experimental Medicine, vol. 197, no. 8, pp. 1037–1043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. A. D. Foey, M. Feldmann, and F. M. Brennan, “Route of monocyte differentiation determines their cytokine production profile: CD40 ligation induces interleukin 10 expression,” Cytokine, vol. 12, no. 10, pp. 1496–1505, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. M. M. Kane and D. M. Mosser, “The role of IL-10 in promoting disease progression in Leishmaniasis,” Journal of Immunology, vol. 166, no. 2, pp. 1141–1147, 2001. View at Scopus
  34. R. K. Mathur, A. Awasthi, P. Wadhone, B. Ramanamurthy, and B. Saha, “Reciprocal CD40 signals through p38MAPK and ERK-1/2 induce counteracting immune responses,” Nature Medicine, vol. 10, no. 5, pp. 540–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Yang, D. M. Mosser, and X. Zhang, “Activation of the MAPK, ERK, following Leishmania amazonensis infection of macrophages,” Journal of Immunology, vol. 178, no. 2, pp. 1077–1085, 2007. View at Scopus
  36. G. Murugaiyan, R. Agrawal, G. C. Mishra, D. Mitra, and B. Saha, “Functional dichotomy in CD40 reciprocally regulates effector T cell functions,” Journal of Immunology, vol. 177, no. 10, pp. 6642–6649, 2006. View at Scopus
  37. G. Murugaiyan, R. Agrawal, G. C. Mishra, D. Mitra, and B. Saha, “Differential CD40/CD40L expression results in counteracting antitumor immune responses,” Journal of Immunology, vol. 178, no. 4, pp. 2047–2055, 2007. View at Scopus
  38. G. Murugaiyan, S. Martin, and B. Saha, “CD40-induced countercurrent conduits for tumor escape or elimination?” Trends in Immunology, vol. 28, no. 11, pp. 467–473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. P. M. Boggiatto, F. Jie, M. Ghosh, et al., “Altered dendritic cell phenotype in response to Leishmania amazonensis amastigote infection is mediated by MAP kinase, ERK,” American Journal of Pathology, vol. 174, no. 5, pp. 1818–1825, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Rub, R. Dey, M. Jadhav, et al., “Cholesterol depletion associated with Leishmania major infection alters macrophage CD40 signalosome composition and effector function,” Nature Immunology, vol. 10, no. 3, pp. 273–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Balaraman, V. K. Singh, P. Tewary, and R. Madhubala, “Leishmania lipophosphoglycan activates the transcription factor activating protein 1 in J774A.1 macrophages through the extracellular signal-related kinase (ERK) and p38 mitogen-activated protein kinase,” Molecular and Biochemical Parasitology, vol. 139, no. 1, pp. 117–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Hallé, M. A. Gomez, M. Stuible, et al., “The Leishmania surface protease GP63 cleaves multiple intracellular proteins and actively participates in p38 mitogen-activated protein kinase inactivation,” Journal of Biological Chemistry, vol. 284, no. 11, pp. 6893–6908, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Medzhitov and C. Janeway Jr., “Innate immune recognition: mechanisms and pathways,” Immunological Reviews, vol. 173, pp. 89–97, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Medzhitov, “Toll-like receptors and innate immunity,” Nature Reviews Immunology, vol. 1, no. 2, pp. 135–145, 2001. View at Scopus
  45. M. G. Netea, C. van der Graaf, J. W. M. Van der Meer, and B. J. Kullberg, “Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system,” Journal of Leukocyte Biology, vol. 75, no. 5, pp. 749–755, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Poltorak, X. He, I. Smirnova, et al., “Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene,” Science, vol. 282, no. 5396, pp. 2085–2088, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, “Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3,” Nature, vol. 413, no. 6857, pp. 732–738, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Medzhitov, P. Preston-Hurlburt, E. Kopp, et al., “MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways,” Molecular Cell, vol. 2, no. 2, pp. 253–258, 1998. View at Scopus
  49. H. Wesche, W. J. Henzel, W. Shillinglaw, S. Li, and Z. Cao, “MyD88: an adapter that recruits IRAK to the IL-1 receptor complex,” Immunity, vol. 7, no. 6, pp. 837–847, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Suzuki, S. Suzuki, G. S. Duncan, et al., “Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4,” Nature, vol. 416, no. 6882, pp. 750–754, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. K. A. Fitzgerald, D. C. Rowe, B. J. Barnes, et al., “LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF,” Journal of Experimental Medicine, vol. 198, no. 7, pp. 1043–1055, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Yamamoto, S. Sato, H. Hemmi, et al., “Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway,” Science, vol. 301, no. 5633, pp. 640–643, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. D. M. Mosser and A. Brittingham, “Leishmania, macrophages and complement: a tale of subversion and exploitation,” Parasitology, vol. 115, supplement, pp. S9–S23, 1997.
  54. I. Becker, N. Salaiza, M. Aguirre, et al., “Leishmania lipophosphoglycan (LPG) activates NK cells through Toll-like receptor-2,” Molecular and Biochemical Parasitology, vol. 130, no. 2, pp. 65–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. T. R. Hawn, A. Ozinsky, D. M. Underhill, et al., “Leishmania major activates IL-1α expression in macrophages through a MyD88-dependent pathway,” Microbes and Infection, vol. 4, no. 8, pp. 763–771, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Muraille, C. De Trez, M. Brait, et al., “Genetically resistant mice lacking MyD88-adapter protein display a high susceptibility to Leishmania major infection associated with a polarized Th2 response,” Journal of Immunology, vol. 170, no. 8, pp. 4237–4241, 2003. View at Scopus
  57. J. F. Flandin, F. Chano, and A. Descoteaux, “RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-γ-primed macrophages,” European Journal of Immunology, vol. 36, no. 2, pp. 411–420, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Kropf, M. A. Freudenberg, M. Modolell, et al., “Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major,” Infection and Immunity, vol. 72, no. 4, pp. 1920–1928, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Kropf, N. Freudenberg, C. Kalis, et al., “Infection of C57BL/10ScCr and C57BL/10ScNCr mice with Leishmania major reveals a role for Toll-like receptor 4 in the control of parasite replication,” Journal of Leukocyte Biology, vol. 76, no. 1, pp. 48–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. U. Schleicher, J. Liese, I. Knippertz, et al., “NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 893–906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Liese, U. Schleicher, and C. Bogdan, “TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis,” European Journal of Immunology, vol. 37, no. 12, pp. 3424–3434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Chandra and S. Naik, “Leishmania donovani infection down-regulates TLR2-stimulated IL-12p40 and activates IL-10 in cells of macrophage/monocytic lineage by modulating MAPK pathways through a contact-dependent mechanism,” Clinical and Experimental Immunology, vol. 154, no. 2, pp. 224–234, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. H. W. Murray, H. Masur, and J. S. Keithly, “Cell-mediated immune response in experimental visceral leishmaniasis. I. Correlation between resistance to Leishmania donovani and lymphokine-generating capacity,” Journal of Immunology, vol. 129, no. 1, pp. 344–350, 1982. View at Scopus
  64. M. Belosevic, D. S. Finbloom, P. H. Van der Meide, M. V. Slayter, and C. A. Nacy, “Administration of monoclonal anti-IFN-γ antibodies in vivo abrogates natural resistance of C3H/HeN mice to infection with Leishmania major,” Journal of Immunology, vol. 143, no. 1, pp. 266–274, 1989. View at Scopus
  65. K. I. Igarashi, G. Garotta, L. Ozmen, et al., “Interferon-γ induces tyrosine phosphorylation of interferon-γ receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor,” Journal of Biological Chemistry, vol. 269, no. 20, pp. 14333–14336, 1994. View at Scopus
  66. M. Sakatsume, K. I. Igarashi, K. D. Winestock, G. Garotta, A. C. Larner, and D. S. Finbloom, “The Jak kinases differentially associate with the α and β (accessory factor) chains of the interferon γ receptor to form a functional receptor unit capable of activating STAT transcription factors,” Journal of Biological Chemistry, vol. 270, no. 29, pp. 17528–17534, 1995. View at Publisher · View at Google Scholar · View at Scopus
  67. U. Boehm, T. Klamp, M. Groot, and J. C. Howard, “Cellular responses to interferon-γ,” Annual Review of Immunology, vol. 15, pp. 749–795, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. G. R. Alvarez, B. S. Zwilling, and W. P. Lafuse, “Mycobacterium avium inhibition of IFN-γ signaling in mouse macrophages: toll-like receptor 2 stimulation increases expression of dominant-negative STAT1β by mRNA stabilization,” Journal of Immunology, vol. 171, no. 12, pp. 6766–6773, 2003. View at Scopus
  69. J. T. Harty and M. J. Bevan, “Specific immunity to Listeria monocytogenes in the absence of IFNγ,” Immunity, vol. 3, no. 1, pp. 109–117, 1995. View at Scopus
  70. E. Balish, R. D. Wagner, A. Vázquez-Torres, C. Pierson, and T. Warner, “Candidiasis in interferon-γ/) mice,” Journal of Infectious Diseases, vol. 178, no. 2, pp. 478–487, 1998. View at Scopus
  71. V. Amani, A. M. Vigário, E. Belnoue, et al., “Involvement of IFN-γ receptor-mediated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection,” European Journal of Immunology, vol. 30, no. 6, pp. 1646–1655, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. L. E. Rosas, T. Keiser, R. Pyles, J. Durbin, and A. R. Satoskar, “Development of protective immunity against cutaneous leishmaniasis is dependent of STAT1-mediated IFN signaling pathway,” European Journal of Immunology, vol. 33, no. 7, pp. 1799–1805, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Nandan and N. E. Reiner, “Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovani: selective inhibition of signaling through Janus kinases and Stat1,” Infection and Immunity, vol. 63, no. 11, pp. 4495–4500, 1995. View at Scopus
  74. J. Blanchette, N. Racette, R. Faure, K. A. Siminovitch, and M. Olivier, “Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-γ-triggered JAK2 activation,” European Journal of Immunology, vol. 29, no. 11, pp. 3737–3744, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Ray, A. A. Gam, R. A. Boykins, and R. T. Kenney, “Inhibition of interferon-γ signaling by Leishmania donovani,” Journal of Infectious Diseases, vol. 181, no. 3, pp. 1121–1128, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. P. E. Kima, N. H. Ruddle, and D. McMahon-Pratt, “Presentation via the class I pathway by Leishmania amazonensis-infected macrophages of an endogenous leishmanial antigen to CD8+ T cells,” Journal of Immunology, vol. 159, no. 4, pp. 1828–1834, 1997. View at Scopus
  77. S. Hussain, B. S. Zwilling, and W. P. Lafuse, “Mycobacterium avium infection of mouse macrophages inhibits IFN-γ Janus kinase-STAT signaling and gene induction by down-regulation of the IFN-γ receptor,” Journal of Immunology, vol. 163, no. 4, pp. 2041–2048, 1999. View at Scopus
  78. R. Fukuda, N. Ishimura, S. Hamamoto, et al., “Co-infection by serologically-silent hepatitis B virus may contribute to poor interferon response in patients with chronic hepatitis C by down-regulation of type-I interferon receptor gene expression in the liver,” Journal of Medical Virology, vol. 63, no. 3, pp. 220–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. A. J. Gehring, R. E. Rojas, D. H. Canaday, D. L. Lakey, C. V. Harding, and W. H. Boom, “The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-regulated HLA-DR and FcγR1 on human macrophages through Toll-like receptor 2,” Infection and Immunity, vol. 71, no. 8, pp. 4487–4497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. N. Bhardwaj, L. E. Rosas, W. P. Lafuse, and A. R. Satoskar, “Leishmania inhibits STAT1-mediated IFN-γ signaling in macrophages: increased tyrosine phosphorylation of dominant negative STAT1β by Leishmania mexicana,” International Journal for Parasitology, vol. 35, no. 1, pp. 75–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Xin, K. Li, and L. Soong, “Down-regulation of dendritic cell signaling pathways by Leishmania amazonensis amastigotes,” Molecular Immunology, vol. 45, no. 12, pp. 3371–3382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. K. W. Moore, R. de Waal Malefyt, R. L. Coffman, and A. O'Garra, “Interleukin-10 and the interleukin-10 receptor,” Annual Review of Immunology, vol. 19, pp. 683–765, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. G. Grütz, “New insights into the molecular mechanism of interleukin-10-mediated immunosuppression,” Journal of Leukocyte Biology, vol. 77, no. 1, pp. 3–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Conti, D. Kempuraj, S. Frydas, et al., “IL-10 subfamily members: IL-19, IL-20, IL-22, IL-24 and IL-26,” Immunology Letters, vol. 88, no. 3, pp. 171–174, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Vieth, A. Will, K. Schroppel, M. Rollinghoff, and A. Gessner, “Interleukin-10 inhibits antimicrobial activity against Leishmania major in murine macrophages,” Scandinavian Journal of Immunology, vol. 40, no. 4, pp. 403–409, 1994. View at Publisher · View at Google Scholar · View at Scopus
  86. I. Vouldoukis, P. A. Bécherel, V. Riveros-Moreno, et al., “Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation,” European Journal of Immunology, vol. 27, no. 4, pp. 860–865, 1997. View at Publisher · View at Google Scholar · View at Scopus
  87. F. M. Balestieri, A. R. Queiroz, C. Scavone, V. M. Costa, M. Barral-Netto, and A. Abrahamsohn Ide, “Leishmania (L.) amazonensis-induced inhibition of nitric oxide synthesis in host macrophages,” Microbes and Infection, vol. 4, no. 1, pp. 23–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Taga, H. Mostowski, and G. Tosato, “Human interleukin-10 can directly inhibit T-cell growth,” Blood, vol. 81, no. 11, pp. 2964–2971, 1993. View at Scopus
  89. R. Chatelain, S. Mauze, and R. L. Coffman, “Experimental Leishmania major infection in mice: role of IL-10,” Parasite Immunology, vol. 21, no. 4, pp. 211–218, 1999. View at Publisher · View at Google Scholar · View at Scopus
  90. H. W. Murray, A. L. Moreira, C. M. Lu, et al., “Determinants of response to interleukin-10 receptor blockade immunotherapy in experimental visceral leishmaniasis,” Journal of Infectious Diseases, vol. 188, no. 3, pp. 458–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. H. W. Murray, C. M. Lu, S. Mauze, et al., “Interleukin-10 (IL-10) in experimental visceral leishmaniasis and IL-10 receptor blockade as immunotherapy,” Infection and Immunity, vol. 70, no. 11, pp. 6284–6293, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Lang, R. L. Rutschman, D. R. Greaves, and P. J. Murray, “Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter,” Journal of Immunology, vol. 168, no. 7, pp. 3402–3411, 2002. View at Scopus
  93. S. A. Miles, S. M. Conrad, R. G. Alves, S. M. B. Jeronimo, and D. M. Mosser, “A role for IgG immune complexes during infection with the intracellular pathogen Leishmania,” Journal of Experimental Medicine, vol. 201, no. 5, pp. 747–754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. N. Noben-Trauth, R. Lira, H. Nagase, W. E. Paul, and D. L. Sacks, “The relative contribution of IL-4 receptor signaling and IL-10 to susceptibility to Leishmania major,” Journal of Immunology, vol. 170, no. 10, pp. 5152–5158, 2003. View at Scopus
  95. S. Nylén and D. Sacks, “Interleukin-10 and the pathogenesis of human visceral leishmaniasis,” Trends in Immunology, vol. 28, no. 9, pp. 378–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. L. U. Buxbaum and P. Scott, “Interleukin 10- and Fcγ receptor-deficient mice resolve Leishmania mexicana lesions,” Infection and Immunity, vol. 73, no. 4, pp. 2101–2108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. B. N. Thomas and L. U. Buxbaum, “FcγRIII mediates immunoglobulin G-induced interleukin-10 and is required for chronic Leishmania mexicana lesions,” Infection and Immunity, vol. 76, no. 2, pp. 623–631, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. R. P. Donnelly, H. Dickensheets, and D. S. Finbloom, “The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes,” Journal of Interferon and Cytokine Research, vol. 19, no. 6, pp. 563–573, 1999. View at Publisher · View at Google Scholar · View at Scopus
  99. P. J. Murray, “STAT3-mediated anti-inflammatory signalling,” Biochemical Society Transactions, vol. 34, no. 6, pp. 1028–1031, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. E. M. Benkhart, M. Siedlar, A. Wedel, T. Werner, and H. W. L. Ziegler-Heitbrock, “Role of Stat3 in lipopolysaccharide-induced IL-10 gene expression,” Journal of Immunology, vol. 165, no. 3, pp. 1612–1617, 2000. View at Scopus
  101. J. K. Riley, K. Takeda, S. Akira, and R. D. Schreiber, “Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action,” Journal of Biological Chemistry, vol. 274, no. 23, pp. 16513–16521, 1999. View at Publisher · View at Google Scholar · View at Scopus
  102. K. Takeda, B. E. Clausen, T. Kaisho, et al., “Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils,” Immunity, vol. 10, no. 1, pp. 39–49, 1999. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Williams, L. Bradley, A. Smith, and B. Foxwell, “Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages,” Journal of Immunology, vol. 172, no. 1, pp. 567–576, 2004. View at Scopus
  104. S.-L. Tan and P. J. Parker, “Emerging and diverse roles of protein kinase C in immune cell signalling,” Biochemical Journal, vol. 376, no. 3, pp. 545–552, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Olivier, R. W. Brownsey, and N. E. Reiner, “Defective stimulus-response coupling in human monocytes infected with Leishmania donovani is associated with altered activation and translocation of protein kinase C,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7481–7485, 1992. View at Scopus
  106. A. Descoteaux, G. Matlashewski, and S. J. Turco, “Inhibition of macrophage protein kinase C-mediated protein phosphorylation by Leishmania donovani lipophosphoglycan,” Journal of Immunology, vol. 149, no. 9, pp. 3008–3015, 1992. View at Scopus
  107. S. Corradin, J. Mauël, A. Ransijn, C. Stürzinger, and G. Vergères, “Down-regulation of MARCKS-related protein (MRP) in macrophages infected with Leishmania,” Journal of Biological Chemistry, vol. 274, no. 24, pp. 16782–16787, 1999. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Descoteaux and S. J. Turco, “Glycoconjugates in Leishmania infectivity,” Biochimica et Biophysica Acta, vol. 1455, no. 2-3, pp. 341–352, 1999. View at Publisher · View at Google Scholar · View at Scopus
  109. Å. Holm, K. Tejle, K.-E. Magnusson, A. Descoteaux, and B. Rasmusson, “Leishmania donovani lipophosphoglycan causes periphagosomal actin accumulation: correlation with impaired translocation of PKCα and defective phagosoem maturation,” Cellular Microbiology, vol. 3, no. 7, pp. 439–447, 2001. View at Publisher · View at Google Scholar · View at Scopus
  110. Å. Holm, K. Tejle, T. Gunnarsson, K.-E. Magnusson, A. Descoteaux, and B. Rasmusson, “Role of protein kinase C α for uptake of unopsonized prey and phagosomal maturation in macrophages,” Biochemical and Biophysical Research Communications, vol. 302, no. 4, pp. 653–658, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Pingel, Z. E. Wang, and R. M. Locksley, “Distribution of protein kinase C isoforms after infection of macrophages with Leishmania major,” Infection and Immunity, vol. 66, no. 4, pp. 1795–1799, 1998. View at Scopus
  112. S. Bhattacharyya, S. Ghosh, P. Sen, S. Roy, and S. Majumdar, “Selective impairment of protein kinase C isotypes in murine macrophage by Leishmania donovani,” Molecular and Cellular Biochemistry, vol. 216, no. 1-2, pp. 47–57, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Bhattacharyya, S. Ghosh, P. L. Jhonson, S. K. Bhattacharya, and S. Majumdar, “Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events,” Infection and Immunity, vol. 69, no. 3, pp. 1499–1507, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Ghosh, S. Bhattacharyya, S. Das, et al., “Generation of ceramide in murine macrophages infected with Leishmania donovani alters macrophage signaling events and aids intracellular parasitic survival,” Molecular and Cellular Biochemistry, vol. 223, no. 1-2, pp. 47–60, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. R. Dey, A. Sarkar, N. Majumder, et al., “Regulation of impaired protein kinase C signaling by chemokines in murine macrophages during visceral leishmaniasis,” Infection and Immunity, vol. 73, no. 12, pp. 8334–8344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. E. E. de Almeida-Amaral, C. Caruso-Neves, L. S. Lara, C. M. Pinheiro, and J. R. Meyer-Fernandes, “Leishmania amazonensis: PKC-like protein kinase modulates the (Na++K+)ATPase activity,” Experimental Parasitology, vol. 116, no. 4, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. N. Alvarez-Rueda, M. Biron, and P. Le Pape, “Infectivity of Leishmania mexicana is associated with differential expression of protein kinase C-like triggered during a cell-cell contact,” PLoS One, vol. 4, no. 10, article e7581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Ruhland and P. E. Kima, “Activation of PI3K/Akt signaling has a dominant negative effect on IL-12 production by macrophages infected with Leishmania amazonensis promastigotes,” Experimental Parasitology, vol. 122, no. 1, pp. 28–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. T. Fukao, M. Tanabe, Y. Terauchi, et al., “P13K-mediated negative feedback regulation of IL-12 production in DCs,” Nature Immunology, vol. 3, no. 9, pp. 875–881, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Yetter, S. Uddin, J. J. Krolewski, H. Jiao, T. Yi, and L. C. Platanias, “Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase,” Journal of Biological Chemistry, vol. 270, no. 31, pp. 18179–18182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  121. M. David, H. E. Chen, S. Goelz, A. C. Larner, and B. G. Neel, “Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1,” Molecular and Cellular Biology, vol. 15, no. 12, pp. 7050–7058, 1995. View at Scopus
  122. P. A. Ram and D. J. Waxman, “Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase,” Journal of Biological Chemistry, vol. 272, no. 28, pp. 17694–17702, 1997. View at Publisher · View at Google Scholar · View at Scopus
  123. U. Klingmuller, U. Lorenz, L. C. Cantley, B. G. Neel, and H. F. Lodish, “Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals,” Cell, vol. 80, no. 5, pp. 729–738, 1995. View at Scopus
  124. M. B. Marrero, V. J. Venema, H. Ju, D. C. Eaton, and R. C. Venema, “Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2,” American Journal of Physiology, vol. 275, no. 5, pp. C1216–C1223, 1998. View at Scopus
  125. D. Banville, R. Stocco, and S.-H. Shen, “Human protein tyrosine phosphatase 1C (PTPN6) gene structure: alternate promoter usage and exon skipping generate multiple transcripts,” Genomics, vol. 27, no. 1, pp. 165–173, 1995. View at Publisher · View at Google Scholar · View at Scopus
  126. J. A. Frearson and D. R. Alexander, “The role of phosphotyrosine phosphatases in haematopoietic cell signal transduction,” BioEssays, vol. 19, no. 5, pp. 417–427, 1997. View at Scopus
  127. K. L. Berg, K. Carlberg, L. R. Rohrschneider, K. A. Siminovitch, and E. R. Stanley, “The major SHP-1-binding, tyrosine-phosphorylated protein in macrophages is a member of the KIR/LIR family and an SHP-1 substrate,” Oncogene, vol. 17, no. 19, pp. 2535–2541, 1998. View at Scopus
  128. P. A. Ram and D. J. Waxman, “Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase,” Journal of Biological Chemistry, vol. 272, no. 28, pp. 17694–17702, 1997. View at Publisher · View at Google Scholar · View at Scopus
  129. Y.-G. Yeung, Y. Wang, D. B. Einstein, P. S. W. Lee, and E. R. Stanley, “Colony-stimulating factor-1 stimulates the formation of multimeric cytosolic complexes of signaling proteins and cytoskeletal components in macrophages,” Journal of Biological Chemistry, vol. 273, no. 27, pp. 17128–17137, 1998. View at Publisher · View at Google Scholar · View at Scopus
  130. G. Forget, D. J. Gregory, L. A. Whitcombe, and M. Olivier, “Role of host protein tyrosine phosphatase SHP-1 in Leishmania donovani-induced inhibition of nitric oxide production,” Infection and Immunity, vol. 74, no. 11, pp. 6272–6279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  131. A. R. Khaled, E. J. Butfiloski, E. S. Sobel, and J. Schiffenbauer, “Functional consequences of the SHP-1 defect in motheaten viable mice: role of NF-κB,” Cellular Immunology, vol. 185, no. 1, pp. 49–58, 1998. View at Publisher · View at Google Scholar · View at Scopus
  132. P. T. Massa and C. Wu, “Increased inducible activation of NF-κB and responsive genes in astrocytes deficient in the protein tyrosine phosphatase SHP-1,” Journal of Interferon and Cytokine Research, vol. 18, no. 7, pp. 499–507, 1998. View at Scopus
  133. G. Forget, K. A. Siminovitch, S. Brochu, S. Rivest, D. Radzioch, and M. Olivier, “Role of host phosphotyrosine phosphatase SHP-1 in the development of murine leishmaniasis,” European Journal of Immunology, vol. 31, no. 11, pp. 3185–3196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Olivier, B.-J. Romero-Gallo, C. Matte, et al., “Modulation of interferon-γ/-induced macrophage activation by phosphotyrosine phosphatases inhibition: effect on murine leishmaniasis progression,” Journal of Biological Chemistry, vol. 273, no. 22, pp. 13944–13949, 1998. View at Publisher · View at Google Scholar · View at Scopus
  135. C. Matte, J.-F. Marquis, J. Blanchette, et al., “Peroxovanadium-mediated protection against murine leishmaniasis: role of the modulation of nitric oxide,” European Journal of Immunology, vol. 30, no. 9, pp. 2555–2564, 2000. View at Publisher · View at Google Scholar · View at Scopus
  136. D. Nandan, R. Lo, and N. E. Reiner, “Activation of phosphotyrosine phosphatase activity attenuates mitogen-activated protein kinase signaling and inhibits c-FOS and nitric oxide synthase expression in macrophages infected with Leishmania donovani,” Infection and Immunity, vol. 67, no. 8, pp. 4055–4063, 1999. View at Scopus
  137. D. Nandan and N. E. Reiner, “Leishmania donovani engages in regulatory interference by targeting macrophage protein tyrosine phosphatase SHP-1,” Clinical Immunology, vol. 114, no. 3, pp. 266–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. I. Abu-Dayyeh, M. T. Shio, S. Sato, S. Akira, B. Cousineau, and M. Olivier, “Leishmania-induced IRAK-1 inactivation is mediated by SHP-1 interacting with an evolutionarily conserved KTIM motif,” PLoS Neglected Tropical Diseases, vol. 2, no. 12, article e305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. Y. A. Hannun and L. M. Obeid, “Ceramide: an intracellular signal for apoptosis,” Trends in Biochemical Sciences, vol. 20, no. 2, pp. 73–77, 1995. View at Publisher · View at Google Scholar · View at Scopus
  140. Y. A. Hannun, “Functions of ceramide in coordinating cellular responses to stress,” Science, vol. 274, no. 5294, pp. 1855–1859, 1996. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Mathias, L. A. Peña, and R. N. Kolesnick, “Signal transduction of stress via ceramide,” Biochemical Journal, vol. 335, no. 3, pp. 465–480, 1998. View at Scopus
  142. J. D. Saba, L. M. Obeid, and Y. A. Hannun, “Ceramide: an intracellular mediator of apopotosis and growth supression,” Philosophical Transactions of the Royal Society B, vol. 351, no. 1336, pp. 233–241, 1996. View at Scopus
  143. R. Dey, N. Majumder, S. Bhattacharjee, et al., “Leishmania donovani-induced ceramide as the key mediator of Akt dephosphorylation in murine macrophages: role of protein kinase Cζ and phosphatase,” Infection and Immunity, vol. 75, no. 5, pp. 2136–2142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Kuroda, M. Nishio, T. Sasaki, et al., “Effective clearance of intracellular Leishmania major in vivo requires Pten in macrophages,” European Journal of Immunology, vol. 38, no. 5, pp. 1331–1340, 2008. View at Publisher · View at Google Scholar · View at Scopus