About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 141657, 6 pages
http://dx.doi.org/10.1155/2010/141657
Review Article

Viral Vaccines and CTL Response

Department of Microbiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA

Received 7 December 2009; Accepted 24 February 2010

Academic Editor: Hanchun Yang

Copyright © 2010 Stacie N. Woolard and Uday Kumaraguru. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. P. Lindsey, B. A. Schroeder, E. R. Miller, et al., “Adverse event reports following yellow fever vaccination,” Vaccine, vol. 26, no. 48, pp. 6077–6082, 2008. View at Publisher · View at Google Scholar · View at PubMed
  2. L. H. Gould, J. Sui, H. Foellmer, et al., “Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile virus,” Journal of Virology, vol. 79, no. 23, pp. 14606–14613, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. K. A. Hanley, L. B. Goddard, L. E. Gilmore, et al., “Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors,” Vector-Borne and Zoonotic Diseases, vol. 5, no. 1, pp. 1–10, 2005. View at Publisher · View at Google Scholar · View at PubMed
  4. T. D. Querec, R. S. Akondy, E. K. Lee, et al., “Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans,” Nature Immunology, vol. 10, no. 1, pp. 116–125, 2009. View at Publisher · View at Google Scholar · View at PubMed
  5. D. P. Webster, J. Farrar, and S. Rowland-Jones, “Progress towards a dengue vaccine,” The Lancet Infectious Diseases, vol. 9, no. 11, pp. 678–687, 2009. View at Publisher · View at Google Scholar
  6. S. Moir and A. S. Fauci, “Nef, macrophages and B cells: a highway for evasion,” Immunology and Cell Biology, vol. 88, no. 1, pp. 1–2, 2010. View at Publisher · View at Google Scholar · View at PubMed
  7. T. Vider-Shalit, M. Almani, R. Sarid, and Y. Louzoun, “The HIV hide and seek game: an immunogenomic analysis of the HIV epitope repertoire,” AIDS, vol. 23, no. 11, pp. 1311–1318, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. A. G. Bowie and L. Unterholzner, “Viral evasion and subversion of pattern-recognition receptor signalling,” Nature Reviews Immunology, vol. 8, no. 12, pp. 911–922, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. K. P. Burke and A. L. Cox, “Hepatitis C virus evasion of adaptive immune responses: a model for viral persistence,” Immunologic Research. In press. View at Publisher · View at Google Scholar · View at PubMed
  10. J. D. Ahlers and I. M. Belyakov, “Memories that last forever: strategies for optimizing vaccine T cell memory,” Blood, vol. 159, no. 9, pp. 1678–1689, 2010.
  11. I. J. Amanna, N. E. Carlson, and M. K. Slifka, “Duration of humoral immunity to common viral and vaccine antigens,” The New England Journal of Medicine, vol. 357, no. 19, pp. 1903–1915, 2007. View at Publisher · View at Google Scholar · View at PubMed
  12. I. J. Amanna, M. K. Slifka, and S. Crotty, “Immunity and immunological memory following smallpox vaccination,” Immunological Reviews, vol. 211, pp. 320–337, 2006. View at Publisher · View at Google Scholar · View at PubMed
  13. I. Arita, “Farewell to smallpox vaccination,” Developments in Biological Standardization, vol. 43, pp. 283–296, 1979.
  14. M. K. Slifka and R. Ahmed, “Long-lived plasma cells: a mechanism for maintaining persistent antibody production,” Current Opinion in Immunology, vol. 10, no. 3, pp. 252–258, 1998. View at Publisher · View at Google Scholar
  15. E. L. Simpson, M. Hercher, E. K. Hammarlund, M. W. Lewis, M. K. Slifka, and J. M. Hanifin, “Cutaneous responses to vaccinia in individuals with previous smallpox vaccination,” Journal of the American Academy of Dermatology, vol. 57, no. 3, pp. 442–444, 2007. View at Publisher · View at Google Scholar · View at PubMed
  16. E. Hammarlund, M. W. Lewis, S. G. Hansen, et al., “Duration of antiviral immunity after smallpox vaccination,” Nature Medicine, vol. 9, no. 9, pp. 1131–1137, 2003. View at Publisher · View at Google Scholar · View at PubMed
  17. I. M. Belyakov, P. Earl, A. Dzutsev, et al., “Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9458–9463, 2003. View at Publisher · View at Google Scholar · View at PubMed
  18. R. Xu, A. J. Johnson, D. Liggitt, and M. J. Bevan, “Cellular and humoral immunity against vaccinia virus infection of mice,” Journal of Immunology, vol. 172, no. 10, pp. 6265–6271, 2004.
  19. B. D. Jamieson and R. Ahmed, “T cell memory. Long-term persistence of virus-specific cytotoxic T cells,” Journal of Experimental Medicine, vol. 169, no. 6, pp. 1993–2005, 1989.
  20. R. Antia, V. V. Ganusov, and R. Ahmed, “The role of models in understanding CD8+ T-cell memory,” Nature Reviews Immunology, vol. 5, no. 2, pp. 101–111, 2005. View at Publisher · View at Google Scholar · View at PubMed
  21. S.-J. Ha, E. E. West, K. Araki, K. A. Smith, and R. Ahmed, “Manipulating both the inhibitory and stimulatory immune system towards the success of therapeutic vaccination against chronic viral infections,” Immunological Reviews, vol. 223, no. 1, pp. 317–333, 2008. View at Publisher · View at Google Scholar · View at PubMed
  22. B. Rehermann, “Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence,” The Journal of Clinical Investigation, vol. 119, no. 7, pp. 1745–1754, 2009. View at Publisher · View at Google Scholar · View at PubMed
  23. H. Frebel, K. Richter, and A. Oxenius, “How chronic viral infections impact on antigen-specific T-cell responses,” European Journal of Immunology, vol. 40, no. 3, pp. 654–663, 2010.
  24. K. Murali-Krishna, J. D. Altman, M. Suresh, et al., “Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection,” Immunity, vol. 8, no. 2, pp. 177–187, 1998. View at Publisher · View at Google Scholar
  25. E. J Wherry, T. C. Becker, D. Boone, M.-K. Kaja, A. Ma, and R. Ahmed, “Homeostatic proliferation but not the generation of virus specific memory CD8 T cells is impaired in the absence of IL-15 or IL-15Rα,” Advances in Experimental Medicine and Biology, vol. 512, pp. 165–175, 2002.
  26. S. E. Hamilton, M. Prlic, and S. C. Jameson, “Environmental conservation: bystander CD4 T cells keep CD8 memories fresh,” Nature Immunology, vol. 5, no. 9, pp. 873–874, 2004. View at Publisher · View at Google Scholar · View at PubMed
  27. D. J. Shedlock and H. Shen, “Requirement for CD4 T cell help in generating functional CD8 T cell memory,” Science, vol. 300, no. 5617, pp. 337–339, 2003. View at Publisher · View at Google Scholar · View at PubMed
  28. J. C. Sun and M. J. Bevan, “Defective CD8 T cell memory following acute infection without CD4 T cell help,” Science, vol. 300, no. 5617, pp. 339–342, 2003. View at Publisher · View at Google Scholar · View at PubMed
  29. U. Kumaraguru, K. Banerjee, and B. T. Rouse, “In vivo rescue of defective memory CD8+ T cells by cognate helper T cells,” Journal of Leukocyte Biology, vol. 78, no. 4, pp. 879–887, 2005. View at Publisher · View at Google Scholar · View at PubMed
  30. E. M. Janssen, N. M. Droin, E. E. Lemmens, et al., “CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death,” Nature, vol. 434, no. 7029, pp. 88–93, 2005. View at Publisher · View at Google Scholar · View at PubMed
  31. E. J. Wherry, D. L. Barber, S. M. Kaech, J. N. Blattman, and R. Ahmed, “Antigen-independent memory CD8 T cells do not develop during chronic viral infection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 45, pp. 16004–16009, 2004. View at Publisher · View at Google Scholar · View at PubMed
  32. D. L. Barber, E. J. Wherry, D. Masopust, et al., “Restoring function in exhausted CD8 T cells during chronic viral infection,” Nature, vol. 439, no. 7077, pp. 682–687, 2006. View at Publisher · View at Google Scholar · View at PubMed
  33. E. J. Wherry, S.-J. Ha, S. M. Kaech, et al., “Molecular signature of CD8+ T cell exhaustion during chronic viral infection,” Immunity, vol. 27, no. 4, pp. 670–684, 2007. View at Publisher · View at Google Scholar · View at PubMed
  34. Y. Belkaid and B. T. Rouse, “Natural regulatory T cells in infectious disease,” Nature Immunology, vol. 6, no. 4, pp. 353–360, 2005. View at Publisher · View at Google Scholar · View at PubMed
  35. J. L. Coombes, K. R. R. Siddiqui, C. V. Arancibia-Carcamo, et al., “A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β -and retinoic acid-dependent mechanism,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1757–1764, 2007. View at Publisher · View at Google Scholar · View at PubMed
  36. J. F. Gallegos-Orozco, A. Yosephy, B. Noble, et al., “Natural history of post-liver transplantation hepatitis C: a review of factors that may influence its course,” Liver Transplantation, vol. 15, no. 12, pp. 1872–1881, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. U. Spengler, M. Lechmann, B. Irrgang, F. L. Dumoulin, and T. Sauerbruch, “Immune responses in hepatitis C virus infection,” Journal of Hepatology, vol. 24, supplement 2, pp. 20–25, 1996.
  38. Z. Y. Keck, K. Machida, M. M. C. Lai, J. K. Ball, A. H. Patel, and S. K. H. Foung, “Therapeutic control of hepatitis C virus: the role of neutralizing monoclonal antibodies,” Current Topics in Microbiology and Immunology, vol. 317, pp. 1–38, 2008. View at Publisher · View at Google Scholar
  39. E. Mizukoshi, C. Eisenbach, B. R. Edlin, et al., “Hepatitis C virus (HCV)-specific immune responses of long-term injection drug users frequently exposed to HCV,” Journal of Infectious Diseases, vol. 198, no. 2, pp. 203–212, 2008. View at Publisher · View at Google Scholar · View at PubMed
  40. H. Ebinuma, N. Nakamoto, Y. Li, et al., “Identification and in vitro expansion of functional antigen-specific CD25+FoxP3+ regulatory T cells in hepatitis C virus infection,” Journal of Virology, vol. 82, no. 10, pp. 5043–5053, 2008. View at Publisher · View at Google Scholar · View at PubMed
  41. A. Dolganiuc and G. Szabo, “T cells with regulatory activity in hepatitis C virus infection: what we know and what we don't,” Journal of Leukocyte Biology, vol. 84, no. 3, pp. 614–622, 2008. View at Publisher · View at Google Scholar · View at PubMed
  42. L. E. Weisman, “Motavizumab, a second-generation humanized mAb for the prevention of respiratory syncytial virus infection in high-risk populations,” Current Opinion in Molecular Therapeutics, vol. 11, no. 2, pp. 208–216, 2009.
  43. T. C. Heineman, M. L. Clements-Mann, G. A. Poland, et al., “A randomized, controlled study in adults of the immunogenicity of a novel hepatitis B vaccine containing MF59 adjuvant,” Vaccine, vol. 17, no. 22, pp. 2769–2778, 1999. View at Publisher · View at Google Scholar
  44. R. O'Loughlin and R. Hajjeh, “Worldwide introduction and coverage of Haemophilus influenzae type b conjugate vaccine,” The Lancet Infectious Diseases, vol. 8, no. 12, p. 736, 2008. View at Publisher · View at Google Scholar
  45. D. J. Shedlock, G. Silvestri, and D. B. Weiner, “Monkeying around with HIV vaccines: using rhesus macaques to define ‘gatekeepers’ for clinical trials,” Nature Reviews Immunology, vol. 9, no. 10, pp. 717–728, 2009. View at Publisher · View at Google Scholar · View at PubMed
  46. D. L. Sodora, J. S. Allan, C. Apetrei, et al., “Toward an AIDS vaccine: lessons from natural simian immunodeficiency virus infections of African nonhuman primate hosts,” Nature Medicine, vol. 15, no. 8, pp. 861–865, 2009. View at Publisher · View at Google Scholar · View at PubMed
  47. B. D. Walker and D. R. Burton, “Toward an AIDS vaccine,” Science, vol. 320, no. 5877, pp. 760–764, 2008. View at Publisher · View at Google Scholar · View at PubMed
  48. B. R. Gundlach, M. G. Lewis, S. Sopper, et al., “Evidence for recombination of live, attenuated immunodeficiency virus vaccine with challenge virus to a more virulent strain,” Journal of Virology, vol. 74, no. 8, pp. 3537–3542, 2000. View at Publisher · View at Google Scholar
  49. D. Masopust, “Developing an HIV cytotoxic T-lymphocyte vaccine: issues of CD8 T-cell quantity, quality and location,” Journal of Internal Medicine, vol. 265, no. 1, pp. 125–137, 2009. View at Publisher · View at Google Scholar · View at PubMed
  50. S. M. Kaech, E. J. Wherry, and R. Ahmed, “Effector and memory T-cell differentiation: implications for vaccine development,” Nature Reviews Immunology, vol. 2, no. 4, pp. 251–262, 2002.
  51. F. N. Toka, C. D. Pack, and B. T. Rouse, “Molecular adjuvants for mucosal immunity,” Immunological Reviews, vol. 199, pp. 100–112, 2004. View at Publisher · View at Google Scholar · View at PubMed
  52. J. D. Ahlers, I. M. Belyakov, and J. A. Berzofsky, “Cytokine, chemokine, and costimulatory molecule modulation to enhance efficacy of HIV vaccines,” Current Molecular Medicine, vol. 3, no. 3, pp. 285–301, 2003. View at Publisher · View at Google Scholar
  53. J. A. Berzofsky, J. D. Ahlers, J. Janik, et al., “Progress on new vaccine strategies against chronic viral infections,” The Journal of Clinical Investigation, vol. 114, no. 4, pp. 450–462, 2004. View at Publisher · View at Google Scholar
  54. J. A. Berzofsky, J. D. Ahlers, and I. M. Belyakov, “Strategies for designing and optimizing new generation vaccines,” Nature Reviews Immunology, vol. 1, no. 3, pp. 209–219, 2001.
  55. K. Shortman, M. H. Lahoud, and I. Caminschi, “Improving vaccines by targeting antigens to dendritic cells,” Experimental and Molecular Medicine, vol. 41, no. 2, pp. 61–66, 2009. View at Publisher · View at Google Scholar
  56. K. Palucka, H. Ueno, J. Fay, and J. Banchereau, “Harnessing dendritic cells to generate cancer vaccines,” Annals of the New York Academy of Sciences, vol. 1174, pp. 88–98, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. A. K. Palucka, H. Ueno, J. W. Fay, and J. Banchereau, “Taming cancer by inducing immunity via dendritic cells,” Immunological Reviews, vol. 220, no. 1, pp. 129–150, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. E. Gilboa, “DC-based cancer vaccines,” The Journal of Clinical Investigation, vol. 117, no. 5, pp. 1195–1203, 2007. View at Publisher · View at Google Scholar · View at PubMed
  59. P. J. Tacken, I. J. M. De Vries, R. Torensma, and C. G. Figdor, “Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting,” Nature Reviews Immunology, vol. 7, no. 10, pp. 790–802, 2007. View at Publisher · View at Google Scholar · View at PubMed
  60. T. A. Waldmann, “The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design,” Nature Reviews Immunology, vol. 6, no. 8, pp. 595–601, 2006. View at Publisher · View at Google Scholar · View at PubMed
  61. L. Rodrigues, S. Nandakumar, C. Bonorino, B. T. Rouse, and U. Kumaraguru, “IL-21 and IL-15 cytokine DNA augments HSV specific effector and memory CD8+ T cell response,” Molecular Immunology, vol. 46, no. 7, pp. 1494–1504, 2009. View at Publisher · View at Google Scholar · View at PubMed
  62. S. A. Calarota, A. Dai, J. N. Trocio, D. B. Weiner, F. Lori, and J. Lisziewicz, “IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine,” Vaccine, vol. 26, no. 40, pp. 5188–5195, 2008. View at Publisher · View at Google Scholar · View at PubMed
  63. M. A. Williams, B. J. Holmes, J. C. Sun, and M. J. Bevan, “Developing and maintaining protective CD8+ memory T cells,” Immunological Reviews, vol. 211, pp. 146–153, 2006. View at Publisher · View at Google Scholar · View at PubMed
  64. F. Melchionda, T. J. Fry, M. J. Milliron, M. A. McKirdy, Y. Tagaya, and C. L. Mackall, “Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool,” The Journal of Clinical Investigation, vol. 115, no. 5, pp. 1177–1187, 2005. View at Publisher · View at Google Scholar
  65. J. R. Mora, G. Cheng, D. Picarella, M. Briskin, N. Buchanan, and U. H. von Andrian, “Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues,” Journal of Experimental Medicine, vol. 201, no. 2, pp. 303–316, 2005. View at Publisher · View at Google Scholar · View at PubMed