About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 181690, 9 pages
http://dx.doi.org/10.1155/2010/181690
Research Article

BALB/c Mice Vaccinated with Leishmania major Ribosomal Proteins Extracts Combined with CpG Oligodeoxynucleotides Become Resistant to Disease Caused by a Secondary Parasite Challenge

1Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2Unidad de Inmunología Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Crta. Pozuelo Km 2, Majadahonda, 28220 Madrid, Spain
3Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Rua Waldemar Falcao, 121, Candeal, 40.296-710 Salvador-Bahia, Brazil

Received 22 July 2009; Revised 11 September 2009; Accepted 29 October 2009

Academic Editor: Jorge Morales-Montor

Copyright © 2010 Laura Ramírez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. L. Herwaldt, “Leishmaniasis,” Lancet, vol. 354, no. 9185, pp. 1191–1199, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Handman, “Leishmaniasis: current status of vaccine development,” Clinical Microbiology Reviews, vol. 14, no. 2, pp. 229–243, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. S. L. Reiner and R. M. Locksley, “The regulation of immunity to Leishmania major,” Annual Review of Immunology, vol. 13, pp. 151–177, 1995. View at Scopus
  4. D. Sacks and N. Noben-Trauth, “The immunology of susceptibility and resistance to Leishmania major in mice,” Nature Reviews Immunology, vol. 2, no. 11, pp. 845–858, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. K. A. Rogers, G. K. DeKrey, M. L. Mbow, R. D. Gillespie, C. I. Brodskyn, and R. G. Titus, “Type 1 and type 2 responses to Leishmania major,” FEMS Microbiology Letters, vol. 209, no. 1, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. R. N. Coler and S. G. Reed, “Second-generation vaccines against leishmaniasis,” Trends in Parasitology, vol. 21, no. 5, pp. 244–249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. B. Palatnik-de-Sousa, “Vaccines for leishmaniasis in the fore coming 25 years,” Vaccine, vol. 26, no. 14, pp. 1709–1724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Kubar and K. Fragaki, “Recombinant DNA-derived Leishmania proteins: from the laboratory to the field,” Lancet Infectious Diseases, vol. 5, no. 2, pp. 107–114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Soto, L. Ramírez, M. A. Pineda, et al., “Searching genes encoding Leishmania antigens for diagnosis and protection,” Scholarly Research Exchange, vol. 2009, Article ID 173039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Requena, S. Iborra, J. Carrión, C. Alonso, and M. Soto, “Recent advances in vaccines for leishmaniasis,” Expert Opinion on Biological Therapy, vol. 4, no. 9, pp. 1505–1517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. A. Bretscher, G. Wei, J. N. Menon, and H. Bielefeldt-Ohmann, “Establishment of stable, cell-mediated immunity that makes “susceptible” mice resistant to Leishmania major,” Science, vol. 257, no. 5069, pp. 539–542, 1992. View at Scopus
  12. J. N. Menon and P. A. Bretscher, “Characterization of the immunological memory state generated in mice susceptible to Leishmania major following exposure to low doses of L. major and resulting in resistance to a normally pathogenic challenge,” European Journal of Immunology, vol. 26, no. 1, pp. 243–249, 1996. View at Scopus
  13. T. M. Doherty and R. L. Coffman, “Leishmania major: effect of infectious dose on T cell subset development in BALB/c mice,” Experimental Parasitology, vol. 84, no. 2, pp. 124–135, 1996. View at Publisher · View at Google Scholar · View at Scopus
  14. J. E. Uzonna, G. Wei, D. Yurkowski, and P. Bretscher, “Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease,” Journal of Immunology, vol. 167, no. 12, pp. 6967–6974, 2001. View at Scopus
  15. S. Iborra, N. Parody, D. R. Abánades, et al., “Vaccination with the Leishmania major ribosomal proteins plus CpG oligodeoxynucleotides induces protection against experimental cutaneous leishmaniasis in mice,” Microbes and Infection, vol. 10, no. 10-11, pp. 1133–1141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. L. Sacks, S. Hieny, and A. Sher, “Identification of cell surface carbohydrate and antigenic changes between noninfective and infective developmental stages of Leishmania major promastigotes,” Journal of Immunology, vol. 135, no. 1, pp. 564–569, 1985. View at Scopus
  17. S. Iborra, J. Carrión, C. Anderson, C. Alonso, D. Sacks, and M. Soto, “Vaccination with the Leishmania infantum acidic ribosomal P0 protein plus CpG oligodeoxynucleotides induces protection against cutaneous leishmaniasis in C57BL/6 mice but does not prevent progressive disease in BALB/c mice,” Infection and Immunity, vol. 73, no. 9, pp. 5842–5852, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. P. A. Buffet, A. Sulahian, Y. J. F. Garin, N. Nassar, and F. Derouin, “Culture microtitration: a sensitive method for quantifying Leishmania infantum in tissues of infected mice,” Antimicrobial Agents and Chemotherapy, vol. 39, no. 9, pp. 2167–2168, 1995. View at Scopus
  19. E. G. Rhee, S. Mendez, J. A. Shah, et al., “Vaccination with heat-killed leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against Leishmania major infection,” Journal of Experimental Medicine, vol. 195, no. 12, pp. 1565–1573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. K. J. Stacey and J. M. Blackwell, “Immunostimulatory DNA as an adjuvant in vaccination against Leishmania major,” Infection and Immunity, vol. 67, no. 8, pp. 3719–3726, 1999. View at Scopus
  21. P. S. Walker, T. Scharton-Kersten, A. M. Krieg, et al., “Immunostimulatory oligodeoxynucleotides promote protective immunity and provide systemic therapy for leishmaniasis via IL-12- and IFN-γ-dependent mechanisms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 12, pp. 6970–6975, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Sacks and S. Kamhawi, “Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis,” Annual Review of Microbiology, vol. 55, pp. 453–483, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. S. B. H. Ahmed, L. Touihri, Y. Chtourou, K. Dellagi, and C. Bahloul, “DNA based vaccination with a cocktail of plasmids encoding immunodominant Leishmania (Leishmania) major antigens confers full protection in BALB/c mice,” Vaccine, vol. 27, no. 1, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Belkaid, S. Kamhawi, G. Modi, et al., “Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis,” Journal of Experimental Medicine, vol. 188, no. 10, pp. 1941–1953, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Carrión, A. Nieto, M. Soto, and C. Alonso, “Adoptive transfer of dendritic cells pulsed with Leishmania infantum nucleosomal histones confers protection against cutaneous leishmaniosis in BALB/c mice,” Microbes and Infection, vol. 9, no. 6, pp. 735–743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Courret, T. Lang, G. Milon, and J.-C. Antoine, “Intradermal inoculations of low doses of Leishmania major and Leishmania amazonensis metacyclic promastigotes induce different immunoparasitic processes and status of protection in BALB/c mice,” International Journal for Parasitology, vol. 33, no. 12, pp. 1373–1383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Mendez, S. K. Reckling, C. A. Piccirillo, D. Sacks, and Y. Belkaid, “Role for CD4+CD25+ regulatory T cells in reactivation of persistent leishmaniasis and control of concomitant immunity,” Journal of Experimental Medicine, vol. 200, no. 2, pp. 201–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Muller, “Role of T cell subsets during the recall of immunologic memory to Leishmania major,” European Journal of Immunology, vol. 22, no. 12, pp. 3063–3069, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. M. M. Kane and D. M. Mosser, “The role of IL-10 in promoting disease progression in leishmaniasis,” Journal of Immunology, vol. 166, no. 2, pp. 1141–1147, 2001. View at Scopus
  30. K. W. Moore, R. de Waal Malefyt, R. L. Coffman, and A. O'Garra, “Interleukin-10 and the interleukin-10 receptor,” Annual Review of Immunology, vol. 19, pp. 683–765, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Noben-Trauth, “Susceptibility to Leishmania major infection in the absence of IL-4,” Immunology Letters, vol. 75, no. 1, pp. 41–44, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Noben-Trauth, R. Lira, H. Nagase, W. E. Paul, and D. L. Sacks, “The relative contribution of IL-4 receptor signaling and IL-10 to susceptibility to Leishmania major,” Journal of Immunology, vol. 170, no. 10, pp. 5152–5158, 2003. View at Scopus
  33. J. Carrión, C. Folgueira, and C. Alonso, “Transitory or long-lasting immunity to Leishmania major infection: the result of immunogenicity and multicomponent properties of histone DNA vaccines,” Vaccine, vol. 26, no. 9, pp. 1155–1165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. R. L. Coffman, “Mechanisms of helper T cell regulation of B-cell activity,” Annals of the New York Academy of Sciences, vol. 681, pp. 25–28, 1993. View at Scopus
  35. T. M. Doherty and R. L. Coffman, “Leishmania antigens presented by GM-CSF-derived macrophages protect susceptible mice against challenge with Leishmania major,” Journal of Immunology, vol. 150, no. 12, pp. 5476–5483, 1993. View at Scopus
  36. Y. Belkaid, C. A. Piccirillo, S. Mendez, E. M. Shevach, and D. L. Sacks, “CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity,” Nature, vol. 420, no. 6915, pp. 502–507, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. C. L. Greenblatt, “The present and future of vaccination for cutaneous leishmaniasis,” Progress in Clinical and Biological Research, vol. 47, pp. 259–285, 1980. View at Scopus
  38. S. Méndez, S. Gurunathan, S. Kamhawi, et al., “The potency and durability of DNA- and protein-based vaccines against Leishmania major evaluated using low-dose, intradermal challenge,” Journal of Immunology, vol. 166, no. 8, pp. 5122–5128, 2001. View at Scopus