About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 198921, 11 pages
http://dx.doi.org/10.1155/2010/198921
Research Article

Pretreatment with Cry1Ac Protoxin Modulates the Immune Response, and Increases the Survival of Plasmodium-Infected CBA/Ca Mice

1Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de mayo esq. Fuerte de Loreto, Iztapalapa 09230, Mexico
2Inmunidad en Mucosas UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico

Received 11 August 2009; Revised 24 November 2009; Accepted 16 December 2009

Academic Editor: Luis I. Terrazas

Copyright © 2010 Martha Legorreta-Herrera et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of Plasmodium falciparum malaria,” Nature, vol. 434, no. 7030, pp. 214–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. C. Bull and K. Marsh, “The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria,” Trends in Microbiology, vol. 10, no. 2, pp. 55–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. L. Doolan, C. Dobaño, and J. K. Baird, “Acquired immunity to Malaria,” Clinical Microbiology Reviews, vol. 22, no. 1, pp. 13–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Artavanis-Tsakonas, J. E. Tongren, and E. M. Riley, “The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology,” Clinical and Experimental Immunology, vol. 133, no. 2, pp. 145–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. B. M. Greenwood, A. M. Bradley-Moore, A. D. Bryceson, and A. Palit, “Immunosuppression in children with malaria,” The Lancet, vol. 1, no. 7743, pp. 169–172, 1972. View at Scopus
  6. D. B. Whitmore, “Suppression of the immune response to heterologous erythrocytes in mice infected with Plasmodium berghei berghei,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 66, no. 1, pp. 5–6, 1972. View at Scopus
  7. B. C. Urban, R. Ing, and M. M. Stevenson, “Early interactions between blood-stage Plasmodium parasites and the immune system,” Current Topics in Microbiology and Immunology, vol. 297, pp. 25–70, 2005. View at Scopus
  8. K. Grech, K. Watt, and A. F. Read, “Host-parasite interactions for virulence and resistance in a malaria model system,” Journal of Evolutionary Biology, vol. 19, no. 5, pp. 1620–1630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. M. N. Wykes, X. Q. Liu, L. Beattie, et al., “Plasmodium strain determines dendritic cell function essential for survival from malaria,” PLoS Pathogens, vol. 3, no. 7, article e96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Hofte and H. R. Whiteley, “Insecticidal crystal proteins of Bacillus thuringiensis,” Microbiological Reviews, vol. 53, no. 2, pp. 242–255, 1989. View at Scopus
  11. P. J. K. Knight, N. Crickmore, and D. J. Ellar, “The receptor for Bacillus thuringiensis CrylA(c) delta-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N,” Molecular Microbiology, vol. 11, no. 3, pp. 429–436, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Schnepf, N. Crickmore, J. Van Rie, et al., “Bacillus thuringiensis and its pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 775–806, 1998. View at Scopus
  13. S. Rojas-Hernandez, M. A. Rodriguez-Monroy, R. Lopez-Revilla, A. A. Resendiz-Albor, and L. Moreno-Fierros, “Intranasal coadministration of the Cry1Ac protoxin with amoebal lysates increases protection against Naegleria fowleri meningoencephalitis,” Infection and Immunity, vol. 72, no. 8, pp. 4368–4375, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. I. Vázquez-Padrón, L. Moreno-Fierros, L. Neri-Bazán, G. A. de la Riva, and R. López-Revilla, “Intragastric and intraperitoneal administration of Cry1Ac protoxin from Bacillus thuringiensis induces systemic and mucosal antibody responses in mice,” Life Sciences, vol. 64, no. 21, pp. 1897–1912, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. G. G. Guerrero and L. Moreno-Fierros, “Carrier potential properties of Bacillus thuringiensis Cry1A toxins for a diphtheria toxin epitope,” Scandinavian Journal of Immunology, vol. 66, no. 6, pp. 610–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. G. G. Guerrero, W. M. Russell, and L. Moreno-Fierros, “Analysis of the cellular immune response induced by Bacillus thuringiensis Cry1A toxins in mice: effect of the hydrophobic motif from diphtheria toxin,” Molecular Immunology, vol. 44, no. 6, pp. 1209–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Roetynck, M. Baratin, S. Johansson, C. Lemmers, E. Vivier, and S. Ugolini, “Natural killer cells and malaria,” Immunological Reviews, vol. 214, no. 1, pp. 251–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Artavanis-Tsakonas and E. M. Riley, “Innate immune response to malaria: rapid induction of IFN-γ from human NK cells by live Plasmodium falciparum-infected erythrocytes,” Journal of Immunology, vol. 169, no. 6, pp. 2956–2963, 2002. View at Scopus
  19. A. Z. Ge, R. M. Pfister, and D. H. Dean, “Hyperexpression of a Bacillus thuringiensis delta-endotoxin-encoding gene in Escherichia coli: properties of the product,” Gene, vol. 93, no. 1, pp. 49–54, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  21. M. Legorreta-Herrera, M. L. Ventura-Ayala, R. N. Licona-Chavez, I. Soto-Cruz, and F. F. Hernandez-Clemente, “Early treatment during a primary malaria infection modifies the development of cross immunity,” Parasite Immunology, vol. 26, no. 1, pp. 7–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Campino, S. Bagot, M.-L. Bergman, et al., “Genetic control of parasite clearance leads to resistance to Plasmodium berghei ANKA infection and confers immunity,” Genes and Immunity, vol. 6, no. 5, pp. 416–421, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Shibui, N. Hozumi, C. Shiraishi, et al., “CD4+ T cell response in early erythrocytic stage malaria: Plasmodium berghei infection in BALB/c and C57BL/6 mice,” Parasitology Research, vol. 105, no. 1, pp. 281–286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. A. R. Rodriguez-Orozco, G. Rico Rosillo, and R. Lopez-Revilla, “The effect of Cry1Ac on human monocytes and neutrophil activation,” Allergy and Clinical Immunology International, vol. 17, no. 2, pp. 64–65, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Nagamatsu, T. Koike, K. Sasaki, A. Yoshimoto, and Y. Furukawa, “The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryIAa toxin,” FEBS Letters, vol. 460, no. 2, pp. 385–390, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. C. F. Ockenhouse, S. Schulman, and H. L. Shear, “Induction of crisis forms in the human malaria parasite Plasmodium falciparum by γ-interferon-activated, monocyte-derived macrophages,” Journal of Immunology, vol. 133, no. 3, pp. 1601–1608, 1984. View at Scopus
  27. T. Yoneto, T. Yoshimoto, C.-R. Wang, et al., “Gamma interferon production is critical for protective immunity to infection with blood-stage Plasmodium berghei XAT but neither NO production nor NK cell activation is critical,” Infection and Immunity, vol. 67, no. 5, pp. 2349–2356, 1999. View at Scopus
  28. H. L. Shear, R. Srinivasan, T. Nolan, and C. Ng, “Role of IFN-γ in lethal and nonlethal malaria in susceptible and resistant murine hosts,” Journal of Immunology, vol. 143, no. 6, pp. 2038–2044, 1989. View at Scopus
  29. F. M. Omer, J. B. de Souza, and E. M. Riley, “Differential induction of TGF-β regulates proinflammatory cytokine production and determines the outcome of lethal and nonlethal Plasmodium yoelii infections,” Journal of Immunology, vol. 171, no. 10, pp. 5430–5436, 2003. View at Scopus
  30. K. N. Couper, D. G. Blount, J. C. R. Hafalla, N. Van Rooijen, J. B. de Souza, and E. M. Riley, “Macrophage-mediated but gamma interferon-independent innate immune responses control the primary wave of Plasmodium yoelii parasitemia,” Infection and Immunity, vol. 75, no. 12, pp. 5806–5818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Stevenson and E. M. Riley, “Innate immunity to malaria,” Nature Reviews Immunology, vol. 4, no. 3, pp. 169–180, 2004. View at Scopus
  32. R. J. Pleass, S. A. Ogun, D. H. McGuinness, J. G. J. Van De Winkel, A. A. Holder, and J. M. Woof, “Novel antimalarial antibodies highlight the importance of the antibody Fc region in mediating protection,” Blood, vol. 102, no. 13, pp. 4424–4430, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. E. Tebo, P. G. Kremsner, and A. J. F. Luty, “Fcγ receptor-mediated phagocytosis of Plasmodium falciparum-infected erythrocytes in vitro,” Clinical and Experimental Immunology, vol. 130, no. 2, pp. 300–306, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. M. M. Mota, K. N. Brown, A. A. Holder, and W. Jarra, “Acute Plasmodium chabaudi chabaudi malaria infection induces antibodies which bind to the surfaces of parasitized erythrocytes and promote their phagocytosis by macrophages in vitro,” Infection and Immunity, vol. 66, no. 9, pp. 4080–4086, 1998. View at Scopus
  35. Y. Peng, R. Kowalewski, S. Kim, and K. B. Elkon, “The role of IgM antibodies in the recognition and clearance of apoptotic cells,” Molecular Immunology, vol. 42, no. 7, pp. 781–787, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. L. Shear, R. S. Nussenzweig, and C. Bianco, “Immune phagocytosis in murine malaria,” Journal of Experimental Medicine, vol. 149, no. 6, pp. 1288–1298, 1979. View at Scopus
  37. B. D. Akanmori, S. Waki, and M. Suzuki, “Immunoglobulin G(2a) isotype may have a protective role in Plasmodium berghei NH65 infection in immunised mice,” Parasitology Research, vol. 80, no. 8, pp. 638–641, 1994. View at Scopus
  38. S. Waki, S. Uehara, K. Kanbe, H. Nariuch, and M. Suzuki, “Interferon-gamma and the induction of protective IgG2a antibodies in non-lethal Plasmodium berghei infections of mice,” Parasite Immunology, vol. 17, no. 10, pp. 503–508, 1995. View at Scopus
  39. J. Langhorne, K. J. Kim, and R. Asofsky, “Distribution of immunoglobulin isotypes in the nonspecific B-cell response induced by infection with Plasmodium chabaudi adami and Plasmodium yoelii,” Cellular Immunology, vol. 90, no. 1, pp. 251–257, 1985. View at Scopus
  40. R. A. Cavinato, K. R. B. Bastos, L. R. Sardinha, R. M. Elias, J. M. Alvarez, and M. R. D'Império Lima, “Susceptibility of the different developmental stages of the asexual (schizogonic) erythrocyte cycle of Plasmodium chabaudi chabaudi to hyperimmune serum, immunoglobulin (Ig)G1, IgG2a and F(ab)2 fragments,” Parasite Immunology, vol. 23, no. 11, pp. 587–597, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Kedzierski, C. G. Black, A. W. Stowers, M. W. Goschnick, D. C. Kaslow, and R. L. Coppel, “Comparison of the protective efficacy of yeast-derived and Escherichia coli-derived recombinant merozoite surface protein 4/5 against lethal challenge by Plasmodium yoelii,” Vaccine, vol. 19, no. 32, pp. 4661–4668, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Garraud, S. Mahanty, and R. Perraut, “Malaria-specific antibody subclasses in immune individuals: a key source of information for vaccine design,” Trends in Immunology, vol. 24, no. 1, pp. 30–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. C. M. Snapper and W. E. Paul, “Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production,” Science, vol. 236, no. 4804, pp. 944–947, 1987. View at Scopus
  44. S. Cohen, I. A. McGregor, and S. Carrington, “Gamma-globulin and acquired immunity to human malaria,” Nature, vol. 192, no. 4804, pp. 733–737, 1961. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Sabchareon, T. Burnouf, D. Ouattara, et al., “Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria,” American Journal of Tropical Medicine and Hygiene, vol. 45, no. 3, pp. 297–308, 1991. View at Scopus
  46. H. Bouharoun-Tayoun, P. Attanath, A. Sabchareon, T. Chongsuphajaisiddhi, and P. Druilhe, “Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes,” Journal of Experimental Medicine, vol. 172, no. 6, pp. 1633–1641, 1990. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Bouharoun-Tayoun, C. Oeuvray, F. Lunel, and P. Druilhe, “Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages,” Journal of Experimental Medicine, vol. 182, no. 2, pp. 409–418, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Ferrante, L. Kumaratilake, C. M. Rzepczyk, and J.-M. Dayer, “Killing of Plasmodium falciparum by cytokine activated effector cells (neutrophils and macrophages),” Immunology Letters, vol. 25, no. 1–3, pp. 179–187, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Groux and J. Gysin, “Opsonization as an effector mechanism in human protection against asexual blood stages of Plasmodium falciparum: functional role of IgG subclasses,” Research in Immunology, vol. 141, no. 6, pp. 529–542, 1990. View at Scopus