About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 237623, 10 pages
http://dx.doi.org/10.1155/2010/237623
Review Article

Therapeutic Cancer Vaccines in Combination with Conventional Therapy

1Center for Cancer Immune Therapy (CCIT), Department of Hematology, 54P4, Copenhagen University Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
2Department of Systems Biology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
3Department of Oncology, Copenhagen University Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark

Received 5 February 2010; Revised 5 May 2010; Accepted 17 May 2010

Academic Editor: Zhengguo Xiao

Copyright © 2010 Mads Hald Andersen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Marchand, P. Weynants, and P. Weynants, “Tumor regression responses in melanoma patients treated with a peptide encoded by gene MAGE-3,” International Journal of Cancer, vol. 63, no. 6, pp. 883–885, 1995. View at Scopus
  2. P. van der Bruggen, C. Traversari, and C. Traversari, “A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma,” Science, vol. 254, no. 5038, pp. 1643–1647, 1991. View at Scopus
  3. F. O. Nestle, S. Alijagic, and S. Alijagic, “Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells,” Nature Medicine, vol. 4, no. 3, pp. 328–332, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. S. A. Rosenberg, J. C. Yang, and J. C. Yang, “Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma,” Nature Medicine, vol. 4, no. 3, pp. 321–327, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Sakaguchi, K. Wing, Y. Onishi, P. Prieto-Martin, and T. Yamaguchi, “Regulatory T cells: how do they suppress immune responses?” International Immunology, vol. 21, no. 10, pp. 1105–1111, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. S. Ostrand-Rosenberg and P. Sinha, “Myeloid-derived suppressor cells: linking inflammation and cancer,” Journal of immunology, vol. 182, no. 8, pp. 4499–4506, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. G. C. Prendergast and E. M. Jaffee, “Cancer immunologists and cancer biologists: why we didn't talk then but need to now,” Cancer Research, vol. 67, no. 8, pp. 3500–3504, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. F. Ghiringhelli, C. Menard, and C. Menard, “Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients,” Cancer Immunology, Immunotherapy, vol. 56, no. 5, pp. 641–648, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. E. Dudley, J. C. Yang, and J. C. Yang, “Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens,” Journal of Clinical Oncology, vol. 26, no. 32, pp. 5233–5239, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. R. G. van der Most, A. J. Currie, B. W. S. Robinson, and R. A. Lake, “Decoding dangerous death: how cytotoxic chemotherapy invokes inflammation, immunity or nothing at all,” Cell Death and Differentiation, vol. 15, no. 1, pp. 13–20, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. A. W. Silk and O. J. Finn, “Cancer vaccines: a promising cancer therapy against all odds,” Future Oncology, vol. 3, no. 3, pp. 299–306, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. A. Würtzen, L. Ø. Pedersen, H. S. Poulsen, and M. H. Claesson, “Specific killing of P53 mutated tumor cell lines by a cross-reactive human HLA-A2-restricted P53-specific CTL line,” International Journal of Cancer, vol. 93, no. 6, pp. 855–861, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. P. M. Vierboom, H. W. Nijman, and H. W. Nijman, “Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes,” Journal of Experimental Medicine, vol. 186, no. 5, pp. 695–704, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Maecker, M. S. von Bergwelt-Baildon, K. S. Anderson, R. H. Vonderheide, K. C. Anderson, L. M. Nadler, and J. L. Schultze, “Rare naturally occurring immune responses to three epitopes from the widely expressed tumour antigens hTERT and CYP1B1 in multiple myeloma patients,” Clinical and Experimental Immunology, vol. 141, no. 3, pp. 558–562, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. N. Sommerfeldt, P. Beckhove, and P. Beckhove, “Heparanase: a new metastasis-associated antigen recognized in breast cancer patients by spontaneously induced memory T lymphocytes,” Cancer Research, vol. 66, no. 15, pp. 7716–7723, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. L. Wenandy, R. B. Sørensen, I. M. Svane, P. T. Straten, and M. H. Andersen, “RhoC a new target for therapeutic vaccination against metastatic cancer,” Cancer Immunology, Immunotherapy, vol. 57, no. 12, pp. 1871–1878, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. A. Meier, S. Reker, and S. Reker, “Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients,” Cancer Immunology, Immunotherapy, vol. 54, no. 3, pp. 219–228, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. P. Kvistborg, S. R. Hadrup, I. M. Svane, M. H. Andersen, and P. T. Straten, “Characterization of a single peptide derived from cytochrome P450 1B1 that elicits spontaneous human leukocyte antigen (HLA)-A1 as well as HLA-B35 restricted CD8 T-cell responses in cancer patients,” Human Immunology, vol. 69, no. 4-5, pp. 266–272, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. B. Maecker, D. H. Sherr, and D. H. Sherr, “The shared tumor-associated antigen cytochrome P450 1B1 is recognized by specific cytotoxic T cells,” Blood, vol. 102, no. 9, pp. 3287–3294, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. A. Yamada, K. Kawano, M. Koga, T. Matsumoto, and K. Itoh, “Multidrug resistance-associated protein 3 is a tumor rejection antigen recognized by HLA-A2402-restricted cytotoxic T lymphocytes,” Cancer Research, vol. 61, no. 17, pp. 6459–6466, 2001. View at Scopus
  21. M. H. Andersen, J. C. Becker, and P. T. Straten, “Regulators of apoptosis: suitable targets for immune therapy of cancer,” Nature Reviews Drug Discovery, vol. 4, no. 5, pp. 399–409, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. A. G. Niethammer, R. Xiang, J. C. Becker, et al., “The vascular endothelial growth factor receptor 2: a self-antigen recognized by cytotoxic T cells mediating tumor-protective immunity,” Nature Medicine, vol. 8, pp. 1369–1375, 2002.
  23. Y. Luo, H. Zhou, and H. Zhou, “Targeting tumor-associated macrophages as a novel strategy against breast cancer,” Journal of Clinical Investigation, vol. 116, no. 8, pp. 2132–2141, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. R. B. Søorensen, L. Berge-Hansen, and L. Berge-Hansen, “The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase,” PLoS One, vol. 4, no. 9, Article ID e6910, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. S. Nair, D. Boczkowski, M. Fassnacht, D. Pisetsky, and E. Gilboa, “Vaccination against the forkhead family transcription factor Foxp3 enhances tumor immunity,” Cancer Research, vol. 67, no. 1, pp. 371–380, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. L. A. Emens, J. M. Asquith, J. M. Leatherman, et al., “Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor—secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation,” Journal of Clinical Oncology, vol. 27, no. 35, pp. 5911–5918, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. R. Ramakrishnan, S. Antonia, and D. I. Gabrilovich, “Combined modality immunotherapy and chemotherapy: a new perspective,” Cancer Immunology, Immunotherapy, vol. 57, no. 10, pp. 1523–1529, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. C. J. Wheeler, A. Das, G. Liu, J. S. Yu, and K. L. Black, “Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination,” Clinical Cancer Research, vol. 10, no. 16, pp. 5316–5326, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. P. M. Arlen, J. L. Gulley, and J. L. Gulley, “A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer,” Clinical Cancer Research, vol. 12, no. 4, pp. 1260–1269, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. S. J. Antonia, N. Mirza, and N. Mirza, “Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer,” Clinical Cancer Research, vol. 12, no. 3, pp. 878–887, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. J. G. Gribben, D. P. Ryan, and D. P. Ryan, “Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy,” Clinical Cancer Research, vol. 11, no. 12, pp. 4430–4436, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. S. Sakaguchi, “Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self,” Nature Immunology, vol. 6, no. 4, pp. 345–352, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. S. Ostrand-Rosenberg, “Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity,” Cancer Immunology and Immunotherapy. In press. View at Publisher · View at Google Scholar · View at PubMed
  34. D. Mougiakakos, A. Choudhury, A. Lladser, R. Kiessling, and C. C. Johansson, “Regulatory T cells in cancer,” Advances in Cancer Research, vol. 107, pp. 57–117, 2010.
  35. C. Ménétrier-Caux, M. Gobert, and C. Caux, “Differences in tumor regulatory T-cell localization and activation status impact patient outcome,” Cancer Research, vol. 69, no. 20, pp. 7895–7898, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. H. Schmidt, S. Suciu, and S. Suciu, “Pretreatment levels of peripheral neutrophils and leukocytes as independent predictors of overall survival in patients with American Joint Committee on Cancer stage IV melanoma: results of the EORTC 18951 biochemotherapy trial,” Journal of Clinical Oncology, vol. 25, no. 12, pp. 1562–1569, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. K. E. de Visser, A. Eichten, and L. M. Coussens, “Paradoxical roles of the immune system during cancer development,” Nature Reviews Cancer, vol. 6, no. 1, pp. 24–37, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. M. H. Andersen, B. S. Sørensen, M. K. Brimnes, I. M. Svane, J. C. Becker, and P. T. Straten, “Identification of heme oxygenase-1-specific regulatory CD8+ T cells in cancer patients,” Journal of Clinical Investigation, vol. 119, no. 8, pp. 2245–2256, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. F. A. Wagener, H. E. van Beurden, J. W. von den Hoff, G. J. Adema, and C. G. Figdor, “The heme-heme oxygenase system: a molecular switch in wound healing,” Blood, vol. 102, no. 2, pp. 521–528, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. M. P. Soares, I. Marguti, A. Cunha, and R. Larsen, “Immunoregulatory effects of HO-1: how does it work?” Current Opinion in Pharmacology, vol. 9, no. 4, pp. 482–489, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. G. C. Prendergast, “Immune escape as a fundamental trait of cancer: focus on IDO,” Oncogene, vol. 27, no. 28, pp. 3889–3900, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. C. Uyttenhove, L. Pilotte, and L. Pilotte, “Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase,” Nature Medicine, vol. 9, no. 10, pp. 1269–1274, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. B. Baban, P. R. Chandler, M. D. Sharma, J. Pihkala, P. A. Koni, D. H. Munn, and A. L. Mellor, “IDO activates regulatory T cells and blocks their conversion into Th17-like T cells,” Journal of Immunology, vol. 183, no. 4, pp. 2475–2483, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. P. Thebault, T. Condamine, and T. Condamine, “Role of IFNγ in allograft tolerance mediated by CD4+CD25+ regulatory T cells by induction of IDO in endothelial cells,” American Journal of Transplantation, vol. 7, no. 11, pp. 2472–2482, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. D.-Y. Hou, A. J. Muller, and A. J. Muller, “Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses,” Cancer Research, vol. 67, no. 2, pp. 792–801, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. R. B. Sorensen, P. T. Straten, and M. H. Andersen, “Comment on “reduced cytotoxic function of effector CD8+ T cells is responsible for indoleamine 2,3-dioxygenase-dependent immune suppression”,” Journal of Immunology, vol. 183, no. 10, p. 6040, 2009.
  47. R. J. North, “Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells,” Journal of Experimental Medicine, vol. 155, no. 4, pp. 1063–1074, 1982. View at Scopus
  48. D. Berd, H. C. Maguire Jr., and M. J. Mastrangelo, “Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide,” Cancer Research, vol. 46, no. 5, pp. 2572–2577, 1986. View at Scopus
  49. S. Brode and A. Cooke, “Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide,” Critical Reviews in Immunology, vol. 28, no. 2, pp. 109–126, 2008. View at Scopus
  50. M. Vukmanovic-Stejic, E. Agius, and E. Agius, “The kinetics of CD4+Foxp3+ T cell accumulation during a human cutaneous antigen-specific memory response in vivo,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3639–3650, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. L. Zhang, K. Dermawan, and K. Dermawan, “Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy,” Clinical Immunology, vol. 129, no. 2, pp. 219–229, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. O. T. M. Chan and L.-X. Yang, “The immunological effects of taxanes,” Cancer Immunology Immunotherapy, vol. 49, no. 4-5, pp. 181–185, 2000. View at Scopus
  53. X. Wu, Q.-M. Feng, Y. Wang, J. Shi, H.-L. Ge, and W. Di, “The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy,” Cancer Immunology, Immunotherapy, vol. 59, pp. 279–291, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. M. Tongu, N. Harashima, T. Yamada, T. Harada, and M. Harada, “Immunogenic chemotherapy with cyclophosphamide and doxorubicin against established murine carcinoma,” Cancer Immunology, Immunotherapy, vol. 59, pp. 769–777, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. Vukmanovic-Stejic, Y. Zhang, and Y. Zhang, “Human CD4+CD25hiFoxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo,” Journal of Clinical Investigation, vol. 116, no. 9, pp. 2423–2433, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. E. Suzuki, V. Kapoor, A. S. Jassar, L. R. Kaiser, and S. M. Albelda, “Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity,” Clinical Cancer Research, vol. 11, no. 18, pp. 6713–6721, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. V. Bronte, T. Kasic, and T. Kasic, “Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers,” Journal of Experimental Medicine, vol. 201, no. 8, pp. 1257–1268, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. J. E. Talmadge, K. C. Hood, L. C. Zobel, L. R. Shafer, M. Coles, and B. Toth, “Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion,” International Immunopharmacology, vol. 7, no. 2, pp. 140–151, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. P. Sinha, V. K. Clements, A. M. Fulton, and S. Ostrand-Rosenberg, “Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells,” Cancer Research, vol. 67, no. 9, pp. 4507–4513, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. S. Nagaraj, J.-I. Youn, H. Weber, et al., “Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer,” Clinical Cancer Research, vol. 16, no. 6, pp. 1812–1823, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. Nagaraj, A. G. Schrum, H. I. Cho, E. Celis, and D. I. Gabrilovich, “Mechanism of T cell tolerance induced by myeloid-derived suppressor cells,” Journal of Immunology, vol. 184, no. 6, pp. 3106–3116, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. I. Poschke, D Mougiakakos, J. Hansson, G. Masucci, and R. Kiessling, “Immature immunosuppressive CD14+ HLA-DRlow cells in melanoma patients are STAT3hi and overexpress CD80, CD83 and DC-Sign,” Cancer Research. In press.
  63. D. Laheru, E. Lutz, and E. Lutz, “Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation,” Clinical Cancer Research, vol. 14, no. 5, pp. 1455–1463, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. E. Dudley and S. A. Rosenberg, “Adoptive cell transfer therapy,” Seminars in Oncology, vol. 34, no. 6, pp. 524–531, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. M. Cobbold, N. Khan, and N. Khan, “Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers,” Journal of Experimental Medicine, vol. 202, no. 3, pp. 379–386, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. R. A. Morgan, M. E. Dudley, and M. E. Dudley, “Cancer regression in patients after transfer of genetically engineered lymphocytes,” Science, vol. 314, no. 5796, pp. 126–129, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. A. P. Rapoport, E. A. Stadtmauer, and E. A. Stadtmauer, “Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer,” Nature Medicine, vol. 11, no. 11, pp. 1230–1237, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. E. Suzuki, J. Sun, V. Kapoor, A. S. Jassar, and S. M. Albelda, “Gemcitabine has significant immunomodulatory activity in murine tumor models independent of its cytotoxic effects,” Cancer Biology and Therapy, vol. 6, no. 6, pp. 880–885, 2007. View at Scopus
  69. V. Radojcic, K. B. Bezak, M. Skarica, M. A. Pletneva, K. Yoshimura, R. D. Schulick, and L. Luznik, “Cyclophosphamide resets dendritic cell homeostasis and enhances antitumor immunity through effects that extend beyond regulatory T cell elimination,” Cancer Immunology, Immunotherapy, vol. 59, no. 1, pp. 137–148, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. H. Tanaka, H. Matsushima, N. Mizumoto, and A. Takashima, “Classification of chemotherapeutic agents based on their differential in vitro effects on dendritic cells,” Cancer Research, vol. 69, no. 17, pp. 6978–6986, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. H. Tanaka, H. Matsushima, A. Nishibu, B. E. Clausen, and A. Takashima, “Dual therapeutic efficacy of vinblastine as a unique chemotherapeutic agent capable of inducing dendritic cell maturation,” Cancer Research, vol. 69, no. 17, pp. 6987–6994, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. G. V. Shurin, I. L. Tourkova, R. Kaneno, and M. R. Shurin, “Chemotherapeutic agents in noncytotoxic concentrations increase antigen presentation by dendritic cells via an IL-12-dependent mechanism,” Journal of Immunology, vol. 183, no. 1, pp. 137–144, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. M. Obeid, A. Tesniere, and A. Tesniere, “Calreticulin exposure dictates the immunogenicity of cancer cell death,” Nature Medicine, vol. 13, no. 1, pp. 54–61, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. K. M. Livesey, D. Tang, H. J. Zeh, and M. T. Lotze, “Autophagy inhibition in combination cancer treatment,” Current Opinion in Investigational Drugs, vol. 10, no. 12, pp. 1269–1279, 2009. View at Scopus
  75. J. E. Ellerman, C. K. Brown, M. de Vera, H. J. Zeh, T. Billiar, A. Rubartelli, and M. T. Lotze, “Masquerader: high mobility group box-1 and cancer,” Clinical Cancer Research, vol. 13, no. 10, pp. 2836–2848, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. H. Jensen, L. Andresen, K. A. Hansen, and S. Skov, “Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity,” Journal of Leukocyte Biology, vol. 86, no. 4, pp. 923–932, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. R. Spisek, A. Charalambous, A. Mazumder, D. H. Vesole, S. Jagannath, and M. V. Dhodapkar, “Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications,” Blood, vol. 109, no. 11, pp. 4839–4845, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. E. S. Bergmann-Leitner and S. I. Abrams, “Treatment of human colon carcinoma cell lines with anti-neoplastic agents enhances their lytic sensitivity to antigen-specific CD8+ cytotoxic T lymphocytes,” Cancer Immunology, Immunotherapy, vol. 50, no. 9, pp. 445–455, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. X. X. Wu, Y. Zeng, X. H. Jin, and Y. Kakehi, “Enhanced susceptibility of adriamycin-treated human renal cell carcinoma cells to lysis by peripheral blood lymphocytes and tumor infiltrating lymphocytes,” Oncology Reports, vol. 18, no. 2, pp. 353–359, 2007. View at Scopus
  80. R. Ramakrishnan, D. Assudani, S. Nagaraj, et al., “Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice,” Journal of Clinical Investigation, vol. 120, no. 4, pp. 1111–1124, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. K. Veugelers, B. Motyka, I. S. Goping, I. Shostak, T. Sawchuk, and R. C. Bleackley, “Granule-mediated killing by granzyme B and perforin requires a mannose 6-phosphate receptor and is augmented by cell surface heparan sulfate,” Molecular Biology of the Cell, vol. 17, no. 2, pp. 623–633, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. J. L. Frazier, J. E. Han, M. Lim, and A. Olivi, “Immunotherapy combined with chemotherapy in the treatment of tumors,” Neurosurgery Clinics of North America, vol. 21, no. 1, pp. 187–194, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. N. M. Haynes, R. G. van der Most, R. A. Lake, and M. J. Smyth, “Immunogenic anti-cancer chemotherapy as an emerging concept,” Current Opinion in Immunology, vol. 20, no. 5, pp. 545–557, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. G. Makin and J. A. Hickman, “Apoptosis and cancer chemotherapy,” Cell and Tissue Research, vol. 301, no. 1, pp. 143–152, 2000. View at Scopus
  85. K. M. Redmond, T. R. Wilson, P. G. Johnston, and D. B. Longley, “Resistance mechanisms to cancer chemotherapy,” Frontiers in Bioscience, vol. 13, no. 13, pp. 5138–5154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. D. B. Longley and P. G. Johnston, “Molecular mechanisms of drug resistance,” Journal of Pathology, vol. 205, no. 2, pp. 275–292, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. S. Shangary and D. E. Johnson, “Recent advances in the development of anticancer agents targeting cell death inhibitors in the Bcl-2 protein family,” Leukemia, vol. 17, no. 8, pp. 1470–1481, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. B. Rochat, J. M. Morsman, G. I. Murray, W. D. Figg, and H. L. Mcleod, “Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation?” Journal of Pharmacology and Experimental Therapeutics, vol. 296, no. 2, pp. 537–541, 2001. View at Scopus
  89. P. Borst, R. Evers, M. Kool, and J. Wijnholds, “A family of drug transporters: the multidrug resistance-associated proteins,” Journal of the National Cancer Institute, vol. 92, no. 16, pp. 1295–1302, 2000. View at Scopus
  90. R. B. Sørensen, O. J. Nielsen, P. T. Straten, and M. H. Andersen, “Functional capacity of Mcl-1-specific cytotoxic T-cells,” Leukemia, vol. 20, no. 8, pp. 1457–1458, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. M. H. Andersen, L. Ø Pedersen, J. C. Becker, and P. T. Straten, “Identification of a cytotoxic T lymphocyte response to the apoptose inhibitor protein Survivin in cancer patients,” Cancer Research, vol. 61, pp. 869–872, 2001.
  92. M. H. Andersen, L. Ø. Pedersen, B. Capeller, E.-B. Bröcker, J. C. Becker, and P. T. Straten, “Spontaneous cytotoxic T-cell responses against survivin-derived MHC class I-restricted T-cell epitopes in situ as well as ex vivo in cancer patients,” Cancer Research, vol. 61, no. 16, pp. 5964–5968, 2001. View at Scopus
  93. M. H. Andersen, S. Reker, J. C. Becker, and P. T. Straten, “The melanoma inhibitor of apoptosis protein: a target for spontaneous cytotoxic T cell responses,” Journal of Investigative Dermatology, vol. 122, no. 2, pp. 392–399, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. M. H. Andersen, I. M. Svane, and I. M. Svane, “Immunogenicity of Bcl-2 in patients with cancer,” Blood, vol. 105, no. 2, pp. 728–734, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. M. H. Andersen, S. Reker, P. Kvistborg, J. C. Becker, and P. T. Straten, “Spontaneous immunity against Bcl-xL in cancer patients,” Journal of Immunology, vol. 175, no. 4, pp. 2709–2714, 2005. View at Scopus
  96. A. J. Munro, “Bystander effects and their implications for clinical radiotherapy,” Journal of Radiological Protection, vol. 29, no. 2A, pp. A133–A142, 2009. View at Scopus
  97. E. Jäger, M. Ringhoffer, and M. Ringhoffer, “Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma,” International Journal of Cancer, vol. 71, no. 2, pp. 142–147, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. B. Seliger, U. Ritz, and S. Ferrone, “Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation,” International Journal of Cancer, vol. 118, no. 1, pp. 129–138, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. A. Tandle, D. G. Blazer III, and S. K. Libutti, “Antiangiogenic gene therapy of cancer: recent developments,” Journal of Translational Medicine, vol. 2, article 22, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. H. Ishizaki, T. Tsunoda, S. Wada, M. Yamauchi, M. Shibuya, and H. Tahara, “Inhibition of tumor growth with antiangiogenic cancer vaccine using epitope peptides derived from human vascular endothelial growth factor receptor 1,” Clinical Cancer Research, vol. 12, no. 19, pp. 5841–5849, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. S. Dias, S. V. Shmelkov, G. Lam, and S. Rafii, “VEGF165 promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition,” Blood, vol. 99, no. 7, pp. 2532–2540, 2002. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Xiang, N. Mizutani, and N. Mizutani, “A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication,” Cancer Research, vol. 65, no. 2, pp. 553–561, 2005. View at Scopus
  103. K. Otto, M. H. Andersen, and A. A. Eggert, “Therapy-induced T cell responses against the universal tumor antigen survivin,” Vaccine, vol. 23, pp. 884–889, 2004.
  104. C. L. Slingluff Jr., G. R. Petroni, and G. R. Petroni, “Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting,” Clinical Cancer Research, vol. 13, no. 21, pp. 6386–6395, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. R. B. Sørensen, I. M. Svane, P. T. Straten, and M. H. Andersen, “A survivin specific T-cell clone from a breast cancer patient display universal tumor cell lysis,” Cancer Biology and Therapy, vol. 7, no. 12, pp. 1885–1887, 2008. View at Scopus
  106. R. B. Sørensen, M. Faurschou, and M. Faurschou, “Melanoma inhibitor of apoptosis protein (ML-IAP) specific cytotoxic T lymphocytes cross-react with an epitope from the auto-antigen SS56,” Journal of Investigative Dermatology, vol. 129, no. 8, pp. 1992–1999, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. M. P. Patel, A. Masood, P. S. Patel, and A. A. Chanan-Khan, “Targeting the Bcl-2,” Current Opinion in Oncology, vol. 21, pp. 516–523, 2009.
  108. H. Yamamoto, C. Y. Ngan, and M. Monden, “Cancer cells survive with survivin,” Cancer Science, vol. 99, no. 9, pp. 1709–1714, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. J. A. Shafer, C. R. Cruz, and C. R. Cruz, “Antigen-specific cytotoxic T lymphocytes can target chemoresistant side-population tumor cells in Hodgkin lymphoma,” Leukemia and Lymphoma, vol. 51, no. 5, pp. 870–880, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. K. Tanaka, S. Iwamoto, G. Gon, T. Nohara, M. Iwamoto, and N. Tanigawa, “Expression of survivin and its relationship to loss of apoptosis in breast carcinomas,” Clinical Cancer Research, vol. 6, no. 1, pp. 127–134, 2000. View at Scopus
  111. E. A. Clark, T. R. Golub, E. S. Lander, and R. O. Hynes, “Genomic analysis of metastasis reveals an essential role for RhoC,” Nature, vol. 406, no. 6795, pp. 532–535, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus