About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 250563, 10 pages
http://dx.doi.org/10.1155/2010/250563
Review Article

Dendritic Cells in the Gut: Interaction with Intestinal Helminths

1Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Avenue Universidad 3000, Colonia Copilco Universidad, México DF 04510, Mexico
2Escuela de Ciencias de la Salud, Universidad Anáhuac México Norte, Avenue Universidad Anáhuac 46, Huixquilucan, 52786 Estado de México, Mexico

Received 22 August 2009; Revised 30 November 2009; Accepted 18 December 2009

Academic Editor: Luis I. Terrazas

Copyright © 2010 Fela Mendlovic and Ana Flisser. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Steinman and Z. A. Cohn, “Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution,” Journal of Experimental Medicine, vol. 137, no. 5, pp. 1142–1162, 1973. View at Scopus
  2. A. Iwasaki, “Mucosal dendritic cells,” Annual Review of Immunology, vol. 25, pp. 381–418, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. L. Coombes and F. Powrie, “Dendritic cells in intestinal immune regulation,” Nature Reviews Immunology, vol. 8, no. 6, pp. 435–446, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. J. Hotez, P. J. Brindley, J. M. Bethony, C. H. King, E. J. Pearce, and J. Jacobson, “Helminth infections: the great neglected tropical diseases,” Journal of Clinical Investigation, vol. 118, no. 4, pp. 1311–1321, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. M. Maizels, “Infections and allergy-helminths, hygiene and host immune regulation,” Current Opinion in Immunology, vol. 17, no. 6, pp. 656–661, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. M. J. G. Johnston, J. A. MacDonald, and D. M. McKay, “Parasitic helminths: a pharmacopeia of anti-inflammatory molecules,” Parasitology, vol. 136, no. 2, pp. 125–147, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. Carvalho, J. Sun, C. Kane, F. Marshall, C. Krawczyk, and E. J. Pearce, “Review series on helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function,” Immunology, vol. 126, no. 1, pp. 28–34, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. A. J. Stagg, A. L. Hart, S. C. Knight, and M. A. Kamm, “The dendritic cell: its role in intestinal inflammation and relationship with gut bacteria,” Gut, vol. 52, no. 10, pp. 1522–1529, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. B. L. Kelsall and M. Rescigno, “Mucosal dendritic cells in immunity and inflammation,” Nature Immunology, vol. 5, no. 11, pp. 1091–1095, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. Iwasaki and B. L. Kelsall, “Unique functions of CD11b+, CD8α+, and double-negative Peyer's patch dendritic cells,” Journal of Immunology, vol. 166, no. 8, pp. 4884–4890, 2001. View at Scopus
  11. Y. Kanamori, K. Ishimaru, M. Nanno, et al., “Identification of novel lymphoid tissues in murine intestinal mucosa where clusters of c-kit+ IL-7R+ Thy1+ lympho-hemopoietic progenitors develop,” Journal of Experimental Medicine, vol. 184, no. 4, pp. 1449–1459, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Bouskra, C. Brézillon, M. Bérard, et al., “Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis,” Nature, vol. 456, no. 7221, pp. 507–510, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. K. Fujihashi, P. B. Boyaka, and J. R. McGGhee, “Host defences at mucosal surfaces,” in Clinical Immunology Principles and Practice, R. R. Rich, Ed., pp. 287–303, Mosby, St. Louis, Miss, USA, 2008.
  14. S. I. Hammerschmidt, M. Ahrendt, U. Bode, et al., “Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo,” Journal of Experimental Medicine, vol. 205, no. 11, pp. 2483–2490, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. G. Gorfu, J. Rivera-Nieves, and K. Ley, “Role of β7 integrins in intestinal lymphocyte homing and retention,” Current Molecular Medicine, vol. 9, no. 7, pp. 836–850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Hahn, N. Thiessen, R. Pabst, M. Buettner, and U. Bode, “Mesenteric lymph nodes are not required for an intestinal immunoglobulin A response to oral cholera toxin,” Immunology, vol. 129, no. 3, pp. 427–436, 2009.
  17. S. Fagarasan, K. Kinoshita, M. Muramatsu, K. Ikuta, and T. Honjo, “In situ class switching and differentiation to IgA-producing cells in the gut lamina propria,” Nature, vol. 413, no. 6856, pp. 639–643, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. H. Kiyono, J. Kunisawa, J. R. McGhee, and J. Mestecky, “The mucosal immune system,” in Fundamental Immunology, William E. Paul, 6th edition, 2008.
  19. K. Shortman and Y.-J. Liu, “Mouse and human dendritic cell subtypes,” Nature Reviews Immunology, vol. 2, no. 3, pp. 151–161, 2002. View at Scopus
  20. J. A. Villadangos and P. Schnorrer, “Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo,” Nature Reviews Immunology, vol. 7, no. 7, pp. 543–555, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. A. Villadangos and L. Young, “Antigen-presentation properties of plasmacytoid dendritic cells,” Immunity, vol. 29, no. 3, pp. 352–361, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. H. Ueno, E. Klechevsky, R. Morita, et al., “Dendritic cell subsets in health and disease,” Immunological Reviews, vol. 219, no. 1, pp. 118–142, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. A. Flores-Langarica, S. Meza-Perez, J. Calderon-Amador, et al., “Network of dendritic cells within the muscular layer of the mouse intestine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 52, pp. 19039–19044, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. A. Iwasaki and B. L. Kelsall, “Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells,” Journal of Experimental Medicine, vol. 190, no. 2, pp. 229–239, 1999. View at Publisher · View at Google Scholar
  25. K. A. Kadaoui and B. Corthésy, “Secretory IgA mediates bacterial translocation to dendritic cells in mouse Peyer's patches with restriction to mucosal compartment,” Journal of Immunology, vol. 179, no. 11, pp. 7751–7757, 2007.
  26. F. G. Chirdo, O. R. Millington, H. Beacock-Sharp, and A. M. Mowat, “Immunomodulatory dendritic cells in intestinal lamina propria,” European Journal of Immunology, vol. 35, no. 6, pp. 1831–1840, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. S. Uematsu, K. Fujimoto, M. H. Jang, et al., “Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5,” Nature Immunology, vol. 9, no. 7, pp. 769–776, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. M. H. Jang, N. Sougawa, T. Tanaka, et al., “CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes,” Journal of Immunology, vol. 176, no. 2, pp. 803–810, 2006.
  29. J. L. Coombes, K. R. R. Siddiqui, C. V. Arancibia-Cárcamo, et al., “A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β -and retinoic acid-dependent mechanism,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1757–1764, 2007. View at Publisher · View at Google Scholar · View at PubMed
  30. C.-M. Sun, J. A. Hall, R. B. Blank, et al., “Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1775–1785, 2007. View at Publisher · View at Google Scholar · View at PubMed
  31. E. Jaensson, H. Uronen-Hansson, O. Pabst, et al., “Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans,” Journal of Experimental Medicine, vol. 205, no. 9, pp. 2139–2149, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. J. R. Mora, M. Iwata, B. Eksteen, et al., “Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells,” Science, vol. 314, no. 5802, pp. 1157–1160, 2006. View at Publisher · View at Google Scholar · View at PubMed
  33. M. Rescigno, M. Urbano, B. Valzasina, et al., “Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria,” Nature Immunology, vol. 2, no. 4, pp. 361–367, 2001. View at Publisher · View at Google Scholar · View at PubMed
  34. J. Bilsborough, T. C. George, A. Norment, and J. L. Viney, “Mucosal CD8α+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties,” Immunology, vol. 108, no. 4, pp. 481–492, 2003. View at Publisher · View at Google Scholar
  35. C. Johansson and B. L. Kelsall, “Phenotype and function of intestinal dendritic cells,” Seminars in Immunology, vol. 17, no. 4, pp. 284–294, 2005. View at Publisher · View at Google Scholar · View at PubMed
  36. F.-P. Huang, N. Platt, M. Wykes, et al., “A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes,” Journal of Experimental Medicine, vol. 191, no. 3, pp. 435–443, 2000. View at Publisher · View at Google Scholar
  37. N. Contractor, J. Louten, L. Kim, C. A. Biron, and B. L. Kelsall, “Cutting edge: Peyer's patch plasmacytoid dendritic cells (pDCs) produce low levels of type I interferons: possible role for IL-10, TGFβ, and prostaglandin E2 in conditioning a unique mucosal pDC phenotype,” Journal of Immunology, vol. 179, no. 5, pp. 2690–2694, 2007.
  38. R. M. Maizels and M. Yazdanbakhsh, “Immune regulation by helminth parasites: cellular and molecular mechanisms,” Nature Reviews Immunology, vol. 3, no. 9, pp. 733–744, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. R. M. Maizels, A. Balic, N. Gomez-Escobar, M. Nair, M. D. Taylor, and J. E. Allen, “Helminth parasites–masters of regulation,” Immunological Reviews, vol. 201, pp. 89–116, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. R. Silva, J. F. Jacysyn, M. S. Macedo, and E. L. Faquin-Mauro, “Immunosuppressive components of Ascaris suum down-regulate expression of costimulatory molecules and function of antigen-presenting cells via an IL-10-mediated mechanism,” European Journal of Immunology, vol. 36, no. 12, pp. 3227–3237, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. C.-C. Chen, S. Louie, B. A. McCormick, W. A. Walker, and H. N. Shi, “Helminth-primed dendritic cells alter the host response to enteric bacterial infection,” Journal of Immunology, vol. 176, no. 1, pp. 472–483, 2006. View at Scopus
  42. H. N. Shi, H. Y. Liu, and C. Nagler-Anderson, “Enteric infection acts as an adjuvant for the response to a model food antigen,” Journal of Immunology, vol. 165, no. 11, pp. 6174–6182, 2000. View at Scopus
  43. M. Segura, Z. Su, C. Piccirillo, and M. M. Stevenson, “Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression,” European Journal of Immunology, vol. 37, no. 7, pp. 1887–1904, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. R. T. Fujiwara, G. G. L. Cançado, P. A. Freitas, et al., “Necator americanus infection: a possible cause of altered dendritic cell differentiation and eosinophil profile in chronically infected individuals,” PLoS Neglected Tropical Diseases, vol. 3, no. 3, article e399, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. A. Balic, Y. Harcus, M. J. Holland, and R. M. Maizels, “Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses,” European Journal of Immunology, vol. 34, no. 11, pp. 3047–3059, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. A. Balic, K. A. Smith, Y. Harcus, and R. M. Maizels, “Dynamics of CD11c+ dendritic cell subsets in lymph nodes draining the site of intestinal nematode infection,” Immunology Letters, vol. 127, no. 1, pp. 68–75, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. K. Koyama, “Dendritic cell expansion occurs in mesenteric lymph nodes of B10.BR mice infected with the murine nematode parasite Trichuris muris,” Parasitology Research, vol. 97, no. 3, pp. 186–190, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. K. Koyama, “Erratum: dendritic cell expansion occurs in mesenteric lymph nodes of B10.BR mice infected with the murine nematode parasite Trichuris muris,” Parasitology Research, vol. 97, no. 3, p. 258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Koyama, “Dendritic cells have a crucial role in the production of cytokines in mesenteric lymph nodes of B10.BR mice infected with Trichuris muris,” Parasitology Research, vol. 102, no. 3, pp. 349–356, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. R. D'Elia and K. J. Else, “In vitro antigen presenting cell-derived IL-10 and IL-6 correlate with Trichuris muris isolate-specific survival,” Parasite Immunology, vol. 31, no. 3, pp. 123–131, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. C. Zaph, A. E. Troy, B. C. Taylor, et al., “Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis,” Nature, vol. 446, no. 7135, pp. 552–556, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. B. C. Taylor, C. Zaph, A. E. Troy, et al., “TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis,” Journal of Experimental Medicine, vol. 206, no. 3, pp. 655–667, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. H. Helmby, K. Takeda, S. Akira, and R. K. Grencis, “Interleukin (IL)-18 promotes the development of chronic gastrointestinal helminth infection by downregulating IL-13,” Journal of Experimental Medicine, vol. 194, no. 3, pp. 355–364, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. W. C. Gause, J. F. Urban Jr., and M. J. Stadecker, “The immune response to parasitic helminths: insights from murine models,” Trends in Immunology, vol. 24, no. 5, pp. 269–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. S. M. Cruickshank, M. L. Deschoolmeester, M. Svensson, et al., “Rapid dendritic cell mobilization to the large intestinal epithelium is associated with resistance to Trichuris muris infection,” Journal of Immunology, vol. 182, no. 5, pp. 3055–3062, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. L. R. Schopf, K. F. Hoffmann, A. W. Cheever, J. F. Urban Jr., and T. A. Wynn, “IL-10 is critical for host resistance and survival during gastrointestinal helminth infection,” Journal of Immunology, vol. 168, no. 5, pp. 2383–2392, 2002. View at Scopus
  57. A. S. MacDonald and R. M. Maizels, “Alarming dendritic cells for Th2 induction,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 13–17, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. D. Jankovic, S. Steinfelder, M. C. Kullberg, and A. Sher, “Mechanisms underlying helminth-induced Th2 polarization: default, negative or positive pathways?” Chemical Immunology and Allergy, vol. 90, pp. 65–81, 2006. View at Scopus
  59. G. Grutz, “New insights into the molecular mechanism of interleukin-10-mediated immunosuppression,” Journal of Leukocyte Biology, vol. 77, no. 1, pp. 3–15, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. H. H. Smits, E. C. de Jong, E. A. Wierenga, and M. L. Kapsenberg, “Different faces of regulatory DCs in homeostasis and immunity,” Trends in Immunology, vol. 26, no. 3, pp. 123–129, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. M. Whelan, M. M. Harnett, K. M. Houston, V. Patel, W. Harnett, and K. P. Rigley, “A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells,” Journal of Immunology, vol. 164, no. 12, pp. 6453–6460, 2000. View at Scopus
  62. S. Ferret-Bernard, R. S. Curwen, and A. P. Mountford, “Proteomic profiling reveals that Th2-inducing dendritic cells stimulated with helminth antigens have a ‘limited maturation’ phenotype,” Proteomics, vol. 8, no. 5, pp. 980–993, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. F. Granucci, C. Vizzardelli, E. Virzi, M. Rescigno, and P. Ricciardi-Castagnoli, “Transcriptional reprogramming of dendritic cells by differentiation stimuli,” European Journal of Immunology, vol. 31, no. 9, pp. 2539–2546, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Józefowski, M. Arredouani, T. Sulahian, and L. Kobzik, “Disparate regulation and function of the class A scavenger receptors SR-AI/II and MARCO,” Journal of Immunology, vol. 175, no. 12, pp. 8032–8041, 2005. View at Scopus
  65. J. Rzepecka, S. Rausch, C. Klotz, et al., “Calreticulin from the intestinal nematode Heligmosomoides polygyrus is a Th2-skewing protein and interacts with murine scavenger receptor-A,” Molecular Immunology, vol. 46, no. 6, pp. 1109–1119, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. T. Ito, Y.-H. Wang, O. Duramad, et al., “TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand,” Journal of Experimental Medicine, vol. 202, no. 9, pp. 1213–1223, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. G. Tang, Q. Qin, P. Zhang, et al., “Reverse signaling using an inducible costimulator to enhance immunogenic function of dendritic cells,” Cellular and Molecular Life Sciences, vol. 66, no. 18, pp. 3067–3080, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. R. I. Nurieva, J. Duong, H. Kishikawa, et al., “Transcriptional regulation of Th2 differentiation by inducible costimulator,” Immunity, vol. 18, no. 6, pp. 801–811, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. I. L. King and M. Mohrs, “IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells,” Journal of Experimental Medicine, vol. 206, no. 5, pp. 1001–1007, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. J. C. Massacand, R. C. Stettler, R. Meier, et al., “Helminth products bypass the need for TSLP in Th2 immune responses by directly modulating dendritic cell function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 13968–13973, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. G. Parthasarathy and L. S. Mansfield, “Trichuris suis excretory secretory products (ESP) elicit interleukin-6 (IL-6) and IL-10 secretion from intestinal epithelial cells (IPEC-1),” Veterinary Parasitology, vol. 131, no. 3-4, pp. 317–324, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus