About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 254521, 12 pages
http://dx.doi.org/10.1155/2010/254521
Review Article

The Role of Lipopeptidophosphoglycan in the Immune Response to Entamoeba histolytica

1Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre “Siglo XXI”, Mexican Institute for Social Security (IMSS), 06720 Mexico City, Mexico
2Gastrointestinal Surgery Department, Specialties Hospital, National Medical Centre “Siglo XXI”, Mexican Institute for Social Security (IMSS), 06720 Mexico City, Mexico
3Graduate Program on Immunology, National School of Biological Sciences, National Polytechnic Institute, 11350 Mexico City, Mexico
4Graduate Program on Molecular Biomedicine and Biotechnology, National School of Biological Sciences, National Polytechnic Institute, 11350 Mexico City, Mexico
5Graduate Program on Chemical and Biological Sciences, National School of Biological Sciences, National Polytechnic Institute, 11350 Mexico City, Mexico

Received 30 June 2009; Accepted 12 October 2009

Academic Editor: Abhay R. Satoskar

Copyright © 2010 Isabel Wong-Baeza et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Araujo, M. E. García, O. Diaz-Suárez, and H. Urdaneta, “Amebiasis: importance of the diagnosis and treatment. Minireview,” Investigación Clínica, vol. 49, no. 2, pp. 265–271, 2008. View at Scopus
  2. G. A. Nari, E. R. Ceballos, G. Carrera Ladrón, et al., “Amebic liver abscess. Three years experience,” Revista Española de Enfermedades Digestivas, vol. 100, no. 5, pp. 268–272, 2008. View at Scopus
  3. R. Graillet, M. Sánchez Aguilar, A. O. Morán-Mendoza, J. F. Hernández-Sierra, A. Gordillo-Moscoso, and J. H. Tapia-Pérez, “Analysis of factors associated to failure of medical treatment of amoebic liver abscess,” Cirugía Española, vol. 84, no. 2, pp. 83–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. Khan, S. Hamid, S. Abid, et al., “Predictive factors for early aspiration in liver abscess,” World Journal of Gastroenterology, vol. 14, no. 13, pp. 2089–2093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. B. S. Pritt and G. C. Clark, “Amebiasis,” Mayo Clinic Proceedings, vol. 83, no. 10, pp. 1154–1160, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. L. Stanley Jr., “Amoebiasis,” The Lancet, vol. 361, no. 9362, pp. 1025–1034, 2003.
  7. J. Araujo, M. García, O. Díaz-Suárez, et al., “Amebiasis: relevance of its diagnosis and treatment,” Investigación Clínica, vol. 49, no. 2, pp. 265–271, 2008.
  8. D. S. Blanc, “Determination of taxonomic status of pathogenic and nonpathogenic Entamoeba histolytica zymodemes using isoenzyme analysis,” Journal of Protozoology, vol. 39, no. 4, pp. 471–479, 1992. View at Scopus
  9. D. A. Bruckner, “Amebiasis,” Clinical Microbiology Reviews, vol. 5, no. 4, pp. 356–369, 1992. View at Scopus
  10. Mexican Secretary of Health, “Epidemiological Survey, week 12. Cases per federal entity of infectious and parasitic diseases of the digestive apparatus, until week 12, 2009,” Mexico, May 2009, http://www.dgepi.salud.gob.mx/boletin/2009/sem13/pdf/cua4.3.pdf.
  11. L. Ávalos-Chávez, “Amebiasis,” in Pediatry, L. Ávalos-Chávez, X. Ávalos-Huízar, and L. Ávalos-Huízar, Eds., Jalisco, México, 2007.
  12. L. F. Cervantes, F. González-Montesinos, L. Landa, and B. Sepulveda, “Comparative study of drugs used in the treatment of acute amebic hepatic abscess,” Archivos de Investigación Médica, vol. 1, supplement 6, 216 pages, 1970. View at Scopus
  13. G. Gutierrez, J. C. Margain, R. Castaneda, O. Enriquez, M. Aubanel, and B. Sepulveda, “National serologic survey. I. Study of antibodies against E. histolytica in a semirural locality on the Gulf of Mexico Coast,” Archivos de Investigación Médica, vol. 5, supplement 2, pp. 475–480, 1974.
  14. G. Gutiérrez, A. Ludlow, G. Espinoza, et al., “Antibodies against Entamoeba histolytica in the Mexican Republic. 1974,” Salud Publica de Mexico, vol. 34, no. 2, pp. 242–254, 1992.
  15. L. Landa, M. Aubanel, E. Segovia, and B. Sepúlveda, “Seroepidemiology of amebiasis in adults,” Archivos de Investigación Médica, vol. 2, supplement 80, pp. 377–380, 1972. View at Scopus
  16. A. Perches, R. Kretschmer, E. Lee, and B. Sepulveda, “Determination of immunoglobulins in serum from patients with invasive amebiasis,” Archivos de Investigación Médica, vol. 1, supplement 100, 1970. View at Scopus
  17. G. M. Ruiz-Palacios, G. Castanon, R. Bojalil, et al., “Low risk of invasive amebiasis in cyst carriers. A longitudinal molecular seroepidemiological study,” Archives of Medical Research, vol. 23, no. 2, pp. 289–291, 1992. View at Scopus
  18. M. A. Rodríguez, M. Báez-Camargo, D. M. Delgadillo, and E. Orozco, “Cloning and expression of an Entamoeba histolytica  NADP+()dependent alcohol dehydrogenase gene,” Biochimica et Biophysica Acta, vol. 1306, no. 1, pp. 23–26, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Rodríguez, M. E. Hidalgo, T. Sanchez, and E. Orozco, “Cloning and characterization of the Entamoeba histolytica pyruvate: ferredoxin oxidoreductase gene,” Molecular and Biochemical Parasitology, vol. 78, no. 1-2, pp. 273–277, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. C. López-Camarillo, M. de la Luz García-Hernández, L. A. Marchat, et al., “Entamoeba histolytica EhDEAD1 is a conserved DEAD-box RNA helicase with ATPase and ATP-dependent RNA unwinding activities,” Gene, vol. 414, no. 1-2, pp. 19–31, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. G. Meléndez-Hernández, M. L. L. Barrios, E. Orozco, and J. P. Luna-Arias, “The Vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein,” BMC Microbiology, vol. 8, article 235, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. E. Orozco, C. López, C. Gomez, D. G. Perez, L. Marchat, C. Bañuelos, and D. M. Delgadillo, “Multidrug resistance in the protozoan parasite Entamoeba histolytica,” Parasitology International, vol. 51, no. 4, pp. 353–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Arroyo and E. Orozoco, “Localization and identification of an Entamoeba histolytica adhesin,” Molecular and Biochemical Parasitology, vol. 23, no. 2, pp. 151–158, 1987. View at Scopus
  24. G. García-Rivera, M. A. Rodríguez, R. Ocádiz, et al., “Entamoeba histolytica: a novel cysteine protease and an adhesin form the 112 kDa surface protein,” Molecular Microbiology, vol. 33, no. 3, pp. 556–568, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Martínez-López, E. Orozco, T. Sánchez, R. M. García-Pérez, F. Hernandez-Hernandez, and M. A. Rodríguez, “The EhADH112 recombinant polypeptide inhibits cell destruction and liver abscess formation by Entamoeba histolytica trophozoites,” Cellular Microbiology, vol. 6, no. 4, pp. 367–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Sepulveda, M. Tanimoto-tweki, P. Calderon, and R. de la Hoz, “Neutralization of the virulence of E. histolytica cultures with immune serums,” Archivos de Investigación Médica, vol. 5, supplement 2, pp. 447–450, 1974.
  27. B. Sepulveda, M. Tanimoto-tweki, P. Calderon, and R. de la Hoz, “Induction of antiamebic passive immunity in hamsters by injecting immune serum,” Archivos de Investigación Médica, vol. 5, supplement 2, pp. 451–456, 1974.
  28. M. Lopez-Osuna, J. Arellano, and R. R. Kretschmer, “The destruction of virulent Entamoeba histolytica by activated human eosinophils,” Parasite Immunology, vol. 14, no. 6, pp. 579–586, 1992. View at Scopus
  29. J. R. Velázquez, P. Llaguno, J. Fernández-Diéz, et al., “Antigen induced eosinophilia protects gerbils (Meriones unguiculatus) against experimental amebic abscess of the liver,” Archives of Medical Research, vol. 26, pp. S93–S98, 1995.
  30. M. Shibayama, V. Rivera-Aguilar, E. Barbosa-Cabrera, et al., “Innate immunity prevents tissue invasion by Entamoeba histolytica,” Canadian Journal of Microbiology, vol. 54, no. 12, pp. 1032–1042, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. R. A. Salata, A. Martinez-Palomo, and H. W. Murray, “Patients treated for amebic liver abscess develop cell-mediated immune responses effective in vitro against Entamoeba histolytica,” Journal of Immunology, vol. 136, no. 7, pp. 2633–2639, 1986. View at Scopus
  32. R. Kretschmer, M. L. Collado, and M. G. Pacheco, “Inhibition of human monocyte locomotion by products of axenically grown E. histolytica,” Parasite Immunology, vol. 7, no. 5, pp. 527–543, 1985. View at Scopus
  33. R. R. Kretschmer, G. Rico, and J. A. Giménez, “A novel anti-inflammatory oligopeptide produced by Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 112, no. 2, pp. 201–209, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Utrera-Barillas, J. R. Velazquez, A. Enciso, et al., “An anti-inflammatory oligopeptide produced by Entamoeba histolytica down-regulates the expression of pro-inflammatory chemokines,” Parasite Immunology, vol. 25, no. 10, pp. 475–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Rojas-Dotor, G. Rico, J. Perez, et al., “Cytokine expression in CD4+ cells exposed to the monocyte locomotion inhibitory factor produced by Entamoeba histolytica,” Parasitology Research, vol. 98, no. 5, pp. 493–495, 2006.
  36. J. A. Gimenez-Scherer, G. Cardenas, M. Lopez-Osuna, et al., “Immunization with a tetramer derivative of an anti-inflammatory pentapeptide produced by Entamoeba histolytica protects gerbils (Meriones unguiculatus) against experimental amoebic abscess of the liver,” Parasite Immunology, vol. 26, no. 8-9, pp. 343–349, 2004.
  37. C. Galanos, O. Lüderitz, and O. Westphal, “A new method for the extraction of R lipopolysaccharides,” European Journal of Biochemistry, vol. 9, no. 2, pp. 245–249, 1969. View at Scopus
  38. C. Galanos, E. T. Rietschel, O. Lüderitz, O. Westphal, Y. B. Kim, and D. W. Watson, “Biological activities of lipid A complexed with bovine-serum albumin.,” European Journal of Biochemistry, vol. 31, no. 2, pp. 230–233, 1972. View at Scopus
  39. C. Galanos, V. Lehmann, and O. Luderitz, “Endotoxic properties of chemically synthesized lipid A structures. Comparison of synthetic lipid A precursor and synthetic analogues with biosynthetic lipid A precursor and free lipid A,” European Journal of Biochemistry, vol. 140, no. 2, pp. 221–227, 1984. View at Scopus
  40. M. K. Hoffmann, C. Galanos, S. Koenig, and H. F. Oettgen, “B-cell activation by lipopolysaccharide. Distinct pathways for induction of mitosis and antibody production,” Journal of Experimental Medicine, vol. 146, no. 6, pp. 1640–1647, 1977. View at Scopus
  41. O. Luderitz, C. Galanos, and V. Lehmann, “Lipid A: chemical structure and biological activity,” Journal of Infectious Diseases, vol. 128, supplement, pp. S17–S29, 1973. View at Scopus
  42. O. Lüderitz, C. Galanos, V. Lehmann, H. Mayer, E. T. Rietschel, and J. Weckesser, “Chemical structure and biological activities of lipid A's from various bacterial families,” Naturwissenschaften, vol. 65, no. 11, pp. 578–585, 1978. View at Publisher · View at Google Scholar · View at Scopus
  43. E. T. Rietschel, Y. B. Kim, D. W. Watson, C. Galanos, O. Luderitz, and O. Westphal, “Pyrogenicity and immunogenicity of lipid A complexed with bovine serum albumin or human serum albumin,” Infection and Immunity, vol. 8, no. 2, pp. 173–177, 1973. View at Scopus
  44. K. I. Tanamoto, U. Zahringer, and G. R. McKenzie, “Biological actitivies of synthetic Lipid A analogs: pyrogenicity, lethal toxicity, anticomplement activity, and induction of gelation of Limulus amoebocyte lysate,” Infection and Immunity, vol. 44, no. 2, pp. 421–426, 1984. View at Scopus
  45. A. Isibasi, C. M. Santa, A. Ramirez, and J. Kumate, “Immunochemistry of a lipopeptidophosphoglycan extracted from trophozoites of Entamoeba histolytica strain HK-9 cultivated in axenic media, using the phenol-water method,” Archivos de Investigación Médica, vol. 13, supplement 3, pp. 51–55, 1982.
  46. A. Isibasi, C. M. Santa, M. Soto, A. Ramirez, and J. Kumate, “Localization of a lipopeptidophosphoglycan extracted by phenol-water from trophozoites of the HK-9 strain of Entamoeba histolytica,” Archivos de Investigación Médica, vol. 13, Supplement 3, pp. 57–62, 1982. View at Scopus
  47. G. Acosta, C. Barranco, A. Isibasi, R. Campos, and J. Kumate, “Excretion of anti-ameba specific antibodies of class IgA in bile from rats immunized with trophozoites of Entamoeba histolytica cultivated in axenic media,” Archivos de Investigación Médica, vol. 13, Supplement 3, pp. 255–259, 1982.
  48. G. Acosta-Altamirano, E. Torres-Sánchez, E. Meraz, A. Isibasi-Araujo, and J. Kumate-Rodríguez, “Detection of class IgA antibodies directed against a lipopeptidophosphoglycan of E. histolytica in samples of human colostrum,” Archivos de Investigaciósn Médica, vol. 17, supplement 1, pp. 291–295, 1986. View at Scopus
  49. R. Campos Rodríguez, C. Barranco-Tovar, A. Isibasi-Araujo, and J. Kumate-Rodríguez, “Anti-amebic plasma cells in peripheral blood of patients with amebic liver abscess,” Archivos de Investigación Médica, vol. 17, supplement 1, pp. 303–306, 1986. View at Scopus
  50. C. Agundis, A. Isibasi, V. Oríz, et al., “Obtaining monoclonal antibodies against outer membrane glycoproteins of Entamoeba histolytica,” Archivos de Investigación Médica, vol. 21, supplement 1, pp. 15–22, 1990. View at Scopus
  51. A. Bhattacharya, R. Ghildyal, S. Bhattacharya, and L. S. Diamond, “Characterization of a monoclonal antibody that selectively recognizes a subset of Entamoeba histolytica isolates,” Infection and Immunity, vol. 58, no. 10, pp. 3458–3461, 1990. View at Scopus
  52. A. Marinets, T. Zhang, N. Guillén, et al., “Protection against invasive amebiasis by a single monoclonal antibody directed against a lipophosphoglycan antigen localized on the surface of Entamoeba histolytica,” Journal of Experimental Medicine, vol. 186, no. 9, pp. 1557–1565, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. C. Yau, I. Crandall, and K. C. Kain, “Development of monoclonal antibodies which specifically recognize Entamoeba histolytica in preserved stool samples,” Journal of Clinical Microbiology, vol. 39, no. 2, pp. 716–719, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. S. I. Miller, R. K. Ernst, and M. W. Bader, “LPS, TLR4 and infectious disease diversity,” Nature Reviews Microbiology, vol. 3, no. 1, pp. 36–46, 2005. View at Publisher · View at Google Scholar · View at PubMed
  55. N. Burdin, L. Brossay, Y. Koezuka, et al., “Selective ability of mouse CD1 to present glycolipids: alpha-galactosylceramide specifically stimulates V alpha 14+ NK T lymphocytes,” Journal of Immunology, vol. 161, no. 7, pp. 3271–3281, 1998.
  56. M. Aubanel, M. Torre-Robles, and B. Sepúlveda, “Trophozoites of Entamoeba histolytica in material from patients with liver abscess,” Archivos de Investigación Médica, vol. 1, supplement, 30 pages, 1970.
  57. C. G. Clark, U. C. M. Alsmark, M. Tazreiter, et al., “Structure and content of the Entamoeba histolytica genome,” Advances in Parasitology, vol. 65, no. 2, pp. 51–190, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. H. Lotter, N. González-Roldán, B. Lindner, et al., “Natural killer T cells activated by a lipopeptidophosphoglycan from Entamoeba histolytica are critically important to control amebic liver abscess,” PLoS Pathogens, vol. 5, no. 5, Article ID e1000434, 2009. View at Publisher · View at Google Scholar · View at PubMed
  59. B. Beutler and E. Th. Rietschel, “Innate immune sensing and its roots: the story of endotoxin,” Nature Reviews Immunology, vol. 3, no. 2, pp. 169–176, 2003. View at Publisher · View at Google Scholar · View at PubMed
  60. A. Coutinho, L. Forni, F. Melchers, and T. Watanabe, “Genetic defect in responsiveness to the B cell mitogen lipopolysaccharide,” European Journal of Immunology, vol. 7, no. 5, pp. 325–328, 1977.
  61. G. Heppner and D. W. Weiss, “High susceptibility of strain A mice to endotoxin and endotoxin-red blood cell mixtures,” Journal of Bacteriology, vol. 90, no. 3, pp. 696–703, 1965.
  62. A. Poltorak, X. He, I. Smirnova, et al., “Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene,” Science, vol. 282, no. 5396, pp. 2085–2088, 1998. View at Publisher · View at Google Scholar
  63. C. Hashimoto, K. L. Hudson, and K. V. Anderson, “The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein,” Cell, vol. 52, no. 2, pp. 269–279, 1988.
  64. B. Lemaitre, E. Nicolas, L. Michaut, J.-M. Reichhart, and J. A. Hoffmann, “The dorsoventral regulatory gene cassette spatzle/Toll/Cactus controls the potent antifungal response in Drosophila adults,” Cell, vol. 86, no. 6, pp. 973–983, 1996. View at Publisher · View at Google Scholar
  65. F. L. Rock, G. Hardiman, J. C. Timans, R. A. Kastelein, and J. F. Bazan, “A family of human receptors structurally related to Drosophila Toll,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 2, pp. 588–593, 1998. View at Publisher · View at Google Scholar
  66. R. Medzhitov, P. Preston-Hurlburt, and C. A. Janeway Jr., “A human homologue of the Drosophila toll protein signals activation of adaptive immunity,” Nature, vol. 388, no. 6640, pp. 394–397, 1997. View at Publisher · View at Google Scholar · View at PubMed
  67. K. J. Ishii, C. Coban, and S. Akira, “Manifold mechanisms of toll-like receptor-ligand recognition,” Journal of Clinical Immunology, vol. 25, no. 6, pp. 511–521, 2005. View at Publisher · View at Google Scholar · View at PubMed
  68. K. J. Ishii, S. Koyama, A. Nakagawa, C. Coban, and S. Akira, “Host innate immune receptors and beyond: making sense of microbial infections,” Cell Host and Microbe, vol. 3, no. 6, pp. 352–363, 2008. View at Publisher · View at Google Scholar · View at PubMed
  69. B. Pulendran and R. Ahmed, “Translating innate immunity into immunological memory: implications for vaccine development,” Cell, vol. 124, no. 4, pp. 849–863, 2006. View at Publisher · View at Google Scholar · View at PubMed
  70. C. A. Janeway Jr., “Approaching the asymptote? Evolution and revolution in immunology,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 54, part 1, pp. 1–13, 1989.
  71. R. T. Gazzinelli and E. Y. Denkers, “Protozoan encounters with Toll-like receptor signalling pathways: implications for host parasitism,” Nature Reviews Immunology, vol. 6, no. 12, pp. 895–906, 2006. View at Publisher · View at Google Scholar · View at PubMed
  72. M. J. McConville and M. A. J. Ferguson, “The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes,” Biochemical Journal, vol. 294, part 2, pp. 305–324, 1993.
  73. A. Guha-Niyogi, D. R. Sullivan, and S. J. Turco, “Glycoconjugate structures of parasitic protozoa,” Glycobiology, vol. 11, no. 4, pp. 45R–59R, 2001.
  74. M. J. de Veer, J. M. Curtis, T. M. Baldwin, et al., “MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling,” European Journal of Immunology, vol. 33, no. 10, pp. 2822–2831, 2003. View at Publisher · View at Google Scholar · View at PubMed
  75. I. Becker, N. Salaiza, M. Aguirre, et al., “Leishmania lipophosphoglycan (LPG) activates NK cells through toll-like receptor-2,” Molecular and Biochemical Parasitology, vol. 130, no. 2, pp. 65–74, 2003.
  76. G. Krishnegowda, A. M. Hajjar, J. Zhu, et al., “Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 8606–8616, 2005. View at Publisher · View at Google Scholar · View at PubMed
  77. F. P. Mockenhaupt, J. P. Cramer, and L. Hamann, “Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria,” Journal of Communicable Diseases, vol. 38, no. 3, pp. 230–245, 2006.
  78. D. C. Gowda, “TLR-mediated cell signaling by malaria GPIs,” Trends in Parasitology, vol. 23, no. 12, pp. 596–604, 2007. View at Publisher · View at Google Scholar · View at PubMed
  79. C. Ropert, B. S. Franklin, and R. T. Gazzinelli, “Role of TLRs/MyD88 in host resistance and pathogenesis during protozoan infection: lessons from malaria,” Seminars in Immunopathology, vol. 30, no. 1, pp. 41–51, 2008. View at Publisher · View at Google Scholar · View at PubMed
  80. R. M. de Lederkremer, C. Lima, M. I. Ramirez, M. A. J. Ferguson, S. W. Homans, and J. Thomas-Oates, “Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi epimastigotes,” Journal of Biological Chemistry, vol. 266, no. 35, pp. 23670–23675, 1991.
  81. M. A. S. Campos, I. C. Almeida, O. Takeuchi, et al., “Activation of toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite,” Journal of Immunology, vol. 167, no. 1, pp. 416–423, 2001.
  82. A. Bafica, H. C. Santiago, R. Goldszmid, C. Ropert, R. T. Gazzinelli, and A. Sher, “Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection,” Journal of Immunology, vol. 177, no. 6, pp. 3515–3519, 2006.
  83. A. Ouaissi, E. Guilvard, Y. Delneste, et al., “The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection,” Journal of Immunology, vol. 168, no. 12, pp. 6366–6374, 2002.
  84. F. Debierre-Grockiego, N. Molitor, R. T. Schwarz, and C. G. K. Lüder, “Toxoplasma gondii glycosylphosphatidylinositols up-regulate major histocompatibility complex (MHC) molecule expression on primary murine macrophages,” Innate Immunity, vol. 15, no. 1, pp. 25–32, 2009. View at Publisher · View at Google Scholar · View at PubMed
  85. C. Maldonado-Bernal, C. J. Kirschning, Y. Rosenstein, et al., “The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by toll-like receptors 2 and 4,” Parasite Immunology, vol. 27, no. 4, pp. 127–137, 2005. View at Publisher · View at Google Scholar · View at PubMed
  86. F. Debierre-Grockiego, M. A. Campos, N. Azzouz, et al., “Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasma gondii,” Journal of Immunology, vol. 179, no. 2, pp. 1129–1137, 2007.
  87. D. van der Kleij, E. Latz, J. F. H. M. Brouwers, et al., “A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates toll-like receptor 2 and affects immune polarization,” Journal of Biological Chemistry, vol. 277, no. 50, pp. 48122–48129, 2002. View at Publisher · View at Google Scholar · View at PubMed
  88. A.-C. Oliveira, J. R. Peixoto, L. B. De Arrada, et al., “Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi,” Journal of Immunology, vol. 173, no. 9, pp. 5688–5696, 2004.
  89. H. S. Goodridge, F. A. Marshall, K. J. Else, et al., “Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62,” Journal of Immunology, vol. 174, no. 1, pp. 284–293, 2005.
  90. P. G. Thomas, M. R. Carter, O. Atochina, et al., “Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism,” Journal of Immunology, vol. 171, no. 11, pp. 5837–5841, 2003.
  91. C. Coban, K. J. Ishii, T. Kawai, et al., “Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin,” Journal of Experimental Medicine, vol. 201, no. 1, pp. 19–25, 2005. View at Publisher · View at Google Scholar · View at PubMed
  92. L. K. M. Shoda, K. A. Kegerreis, C. E. Suarez, et al., “DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide,” Infection and Immunity, vol. 69, no. 4, pp. 2162–2171, 2001. View at Publisher · View at Google Scholar · View at PubMed
  93. F. H. Abou Fakher, N. Rachinel, M. Klimczak, J. Louis, and N. Doyen, “TLR9-dependent activation of dendritic cells by DNA from Leishmania major favors Th1 cell development and the resolution of lesions,” Journal of immunology, vol. 182, no. 3, pp. 1386–1396, 2009.
  94. C. P. A. Ivory, M. Prystajecky, C. Jobin, and K. Chadee, “Toll-like receptor 9-dependent macrophage activation by Entamoeba histolytica DNA,” Infection and Immunity, vol. 76, no. 1, pp. 289–297, 2008. View at Publisher · View at Google Scholar · View at PubMed
  95. F. Yarovinsky, D. Zhang, J. F. Andersen, et al., “Immunology: TLR11 activation of dendritic cells by a protozoan profilin-like protein,” Science, vol. 308, no. 5728, pp. 1626–1629, 2005. View at Publisher · View at Google Scholar · View at PubMed
  96. C. Maldonado, W. Trejo, A. Ramirez, et al., “Lipophosphopeptidoglycan of Entamoeba histolytica induces an antiinflammatory innate immune response and downregulation of toll-like receptor 2 (TLR-2) gene expression in human monocytes,” Archives of Medical Research, vol. 31, no. 4, supplement 1, pp. S71–S73, 2000. View at Publisher · View at Google Scholar
  97. H. Vivanco-Cid, C. Alpuche-Aranda, I. Wong-Baeza, et al., “Lipopopeptidephosphoglycan from Entamoeba histolytica activates human macrophages and dendritic cells and reaches their late endosomes,” Parasite Immunology, vol. 29, no. 9, pp. 467–474, 2007. View at Publisher · View at Google Scholar · View at PubMed
  98. W. A. Petri Jr. and R. L. Schnaar, “Purification and characterization of galactose- and N- acetylgalactosamine-specific adhesin lectin of Entamoeba histolytica,” Methods in Enzymology, vol. 253, pp. 98–104, 1995. View at Publisher · View at Google Scholar
  99. J. L. Rosales-Encina, I. Meza, A. Lopez-De-Leon, P. Talamas-Rohana, and M. Rojkind, “Isolation of a 220-kilodalton protein with lectin properties from a virulent strain of Entamoeba histolytica,” Journal of Infectious Diseases, vol. 156, no. 5, pp. 790–797, 1987.
  100. S. L. Stanley Jr., H. Huizenga, and E. Li, “Isolation and partial characterization of a surface glycoconjugate of Entamoeba histolytica,” Molecular and Biochemical Parasitology, vol. 50, no. 1, pp. 127–138, 1992. View at Publisher · View at Google Scholar
  101. D. R. Boettner, C. D. Huston, J. A. Sullivan, and W. A. Petri Jr., “Entamoeba histolytica and Entamoeba dispar utilize externalized phosphatidylserine for recognition and phagocytosis of erythrocytes,” Infection and Immunity, vol. 73, no. 6, pp. 3422–3430, 2005. View at Publisher · View at Google Scholar · View at PubMed
  102. E. E. Avila and J. Calderon, “Entamoeba histolytica trophozoites: a surface-associated cysteine protease,” Experimental Parasitology, vol. 76, no. 3, pp. 232–241, 1993. View at Publisher · View at Google Scholar · View at PubMed
  103. T. Jacobs, I. Bruchhaus, T. Dandekar, E. Tannich, and M. Leippe, “Isolation and molecular characterization of a surface-bound proteinase of Entamoeba histolytica,” Molecular Microbiology, vol. 27, no. 2, pp. 269–276, 1998. View at Publisher · View at Google Scholar
  104. N. Perreault, F. E. Herring-Gillam, N. Desloges, I. Bélanger, L.-P. Pageot, and J.-F. Beaulieu, “Epithelial vs mesenchymal contribution to the extracellular matrix in the human intestine,” Biochemical and Biophysical Research Communications, vol. 248, no. 1, pp. 121–126, 1998. View at Publisher · View at Google Scholar · View at PubMed
  105. S. L. Reed, W. E. Keene, and J. H. McKerrow, “Thiol proteinase expression and pathogenicity of Entamoeba histolytica,” Journal of Clinical Microbiology, vol. 27, no. 12, pp. 2772–2777, 1989.
  106. H. Scholze and W. Schulte, “On the specificity of a cysteine proteinase from Entamoeba histolytica,” Biomedica Biochimica Acta, vol. 47, no. 2, pp. 115–123, 1988.
  107. H. Scholze and E. Tannich, “Cysteine endopeptidases of Entamoeba histolytica,” Methods in Enzymology, vol. 244, pp. 512–523, 1994. View at Publisher · View at Google Scholar
  108. W. Schulte and H. Scholze, “Action of the major protease from Entamoeba histolytica on proteins of the extracellular matrix,” Journal of Protozoology, vol. 36, no. 6, pp. 538–543, 1989.
  109. M. Espinosa-Cantellano and A. Martínez-Palomo, “Pathogenesis of intestinal amebiasis: from molecules to disease,” Clinical Microbiology Reviews, vol. 13, no. 2, pp. 318–331, 2000. View at Publisher · View at Google Scholar
  110. A. Martinez-Palomo and M. Espinosa-Cantellano, “Amoebiasis: new understanding and new goals,” Parasitology Today, vol. 14, no. 1, pp. 1–3, 1998.
  111. M. Okada and T. Nozaki, “New insights into molecular mechanisms of phagocytosis in Entamoeba histolytica by proteomic analysis,” Archives of Medical Research, vol. 37, no. 2, pp. 244–252, 2006. View at Publisher · View at Google Scholar · View at PubMed
  112. A. E. Pinilla, M. C. López, and D. F. Viasus, “History of the Entamoeba histolytica protozoan,” Revista Médica de Chile, vol. 136, no. 1, pp. 118–124, 2008.
  113. K. Prathap and R. Gilman, “The histopathology of acute intestinal amebiasis. A rectal biopsy study.,” American Journal of Pathology, vol. 60, no. 2, pp. 229–246, 1970.
  114. M. E. Quintanar-Quintanar, A. Jarillo-Luna, V. Rivera-Aguilar, et al., “Immunosuppressive treatment inhibits the development of amebic liver abscesses in hamsters,” Medical Science Monitor, vol. 10, no. 9, pp. BR317–BR324, 2004.
  115. V. Tsutsumi, R. Mena-Lopez, F. Anaya-Velazquez, and A. Martinez-Palomo, “Cellular bases of experimental amebic liver abscess formation,” American Journal of Pathology, vol. 117, no. 1, pp. 81–91, 1984.
  116. M. De Lourdes Canales-Trevino, V. Tsutsumi, and A. Martinez-Palomo, “Role of macrophages and T-lymphocytes: resistance of guinea pigs to amebic liver infection,” Archivos de Investigación Médica, vol. 21, supplement 1, pp. 81–84, 1990.
  117. V. Tsutsumi and M. Shibayama, “Experimental amebiasis: a selected review of some in vivo models,” Archives of Medical Research, vol. 37, no. 2, pp. 210–220, 2006. View at Publisher · View at Google Scholar · View at PubMed
  118. S. J. Kammanadiminti, B. J. Mann, L. Dutil, and K. Chadee, “Regulation of Toll-like receptor-2 expression by the Gal-lectin of Entamoeba histolytica,” The FASEB Journal, vol. 18, no. 1, pp. 155–157, 2004.
  119. D. Vats, R. A. Vishwakarma, S. Bhattacharya, and A. Bhattacharya, “Reduction of cell surface glycosylphosphatidylinositol conjugates in Entamoeba histolytica by antisense blocking of E. histolytica GlcNAc-phosphatidylinositol deacetylase expression: effect on cell proliferation, endocytosis, and adhesion to target cells,” Infection and Immunity, vol. 73, no. 12, pp. 8381–8392, 2005. View at Publisher · View at Google Scholar · View at PubMed
  120. Z. Zhang, M. Duchêne, and S. L. Stanley Jr., “A monoclonal antibody to the amebic lipophosphoglycan-proteophosphoglycan antigens can prevent disease in human intestinal xenografts infected with Entamoeba histolytica,” Infection and Immunity, vol. 70, no. 10, pp. 5873–5876, 2002. View at Publisher · View at Google Scholar
  121. S. Moody, S. Becker, Y. Nuchamowitz, and D. Mirelman, “Virulent and avirulent Entamoeba histolytica and E. dispar differ in their cell surface phosphorylated glycolipids,” Parasitology, vol. 114, part 2, pp. 95–104, 1997. View at Publisher · View at Google Scholar
  122. L. Van Kaer and S. Joyce, “Innate immunity: NKT cells in the spotlight,” Current Biology, vol. 15, no. 11, pp. R429–R431, 2005. View at Publisher · View at Google Scholar · View at PubMed
  123. D. Zhou, J. Mattner, C. Cantu III, et al., “Lysosomal glycosphingolipid recognition by NKT cells,” Science, vol. 306, no. 5702, pp. 1786–1789, 2004. View at Publisher · View at Google Scholar · View at PubMed
  124. J. Mattner, K. L. DeBord, N. Ismail, et al., “Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections,” Nature, vol. 434, no. 7032, pp. 525–529, 2005. View at Publisher · View at Google Scholar · View at PubMed
  125. E. Acosta-Ramírez, R. Pérez-Flores, N. Majeau, et al., “Translating innate response into long-lasting antibody response by the intrinsic antigen-adjuvant properties of papaya mosaic virus,” Immunology, vol. 124, no. 2, pp. 186–197, 2008. View at Publisher · View at Google Scholar · View at PubMed
  126. L. Cervantes-Barragán, C. Gil-Cruz, R. Pastelin-Palacios, et al., “TLR2 and TLR4 signaling shapes specific antibody responses to Salmonella typhi antigens,” European Journal of Immunology, vol. 39, no. 1, pp. 126–135, 2009. View at Publisher · View at Google Scholar · View at PubMed
  127. I. Secundino, C. López-Macías, L. Cervantes-Barrag án, et al., “Salmonella porins induce a sustained, lifelong specific bactericidal antibody memory response,” Immunology, vol. 117, no. 1, pp. 59–70, 2006. View at Publisher · View at Google Scholar · View at PubMed
  128. F. Yarovinsky, H. Kanzler, S. Hieny, R. L. Coffman, and A. Sher, “Toll-like receptor recognition regulates immunodominance in an antimicrobial CD4+ T cell response,” Immunity, vol. 25, no. 4, pp. 655–664, 2006. View at Publisher · View at Google Scholar · View at PubMed
  129. Q. Wang, R. M. McLoughlin, B. A. Cobb, et al., “A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2,” Journal of Experimental Medicine, vol. 203, no. 13, pp. 2853–2863, 2006. View at Publisher · View at Google Scholar · View at PubMed
  130. T. Querec, S. Bennouna, S. Alkan, et al., “Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity,” Journal of Experimental Medicine, vol. 203, no. 2, pp. 413–424, 2006. View at Publisher · View at Google Scholar · View at PubMed
  131. M. F. Delgado, S. Coviello, A. C. Monsalvo, et al., “Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease,” Nature Medicine, vol. 15, no. 1, pp. 34–41, 2009. View at Publisher · View at Google Scholar · View at PubMed
  132. P. Marrack, A. S. McKee, and M. W. Munks, “Towards an understanding of the adjuvant action of aluminium,” Nature Reviews Immunology, vol. 9, no. 4, pp. 287–293, 2009. View at Publisher · View at Google Scholar · View at PubMed
  133. N. W. Palm and R. Medzhitov, “Immunostimulatory activity of haptenated proteins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 12, pp. 4782–4787, 2009. View at Publisher · View at Google Scholar · View at PubMed