About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 263810, 10 pages
http://dx.doi.org/10.1155/2010/263810
Review Article

Immune Response of Cytotoxic T Lymphocytes and Possibility of Vaccine Development for Hepatitis C Virus Infection

Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan

Received 11 November 2009; Revised 25 January 2010; Accepted 15 March 2010

Academic Editor: Zhengguo Xiao

Copyright © 2010 Kazumasa Hiroishi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q.-L. Choo, G. Kuo, A. J. Weiner, L. R. Overby, D. W. Bradley, and M. Houghton, “Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome,” Science, vol. 244, no. 4902, pp. 359–362, 1989.
  2. K. L. Yap, G. L. Ada, and I. F. C. McKenzie, “Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus,” Nature, vol. 273, no. 5659, pp. 238–239, 1978.
  3. R. M. Zinkernagel, E. Haenseler, T. Leist, A. Cerny, H. Hengartner, and A. Althage, “T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay?” Journal of Experimental Medicine, vol. 164, no. 4, pp. 1075–1092, 1986.
  4. C. E. Samuel, “Antiviral actions of interferons,” Clinical Microbiology Reviews, vol. 14, no. 4, pp. 778–809, 2001. View at Publisher · View at Google Scholar · View at PubMed
  5. Y.-J. Liu, H. Kanzler, V. Soumelis, and M. Gilliet, “Dendritic cell lineage, plasticity and cross-regulation,” Nature Immunology, vol. 2, no. 7, pp. 585–589, 2001. View at Publisher · View at Google Scholar · View at PubMed
  6. H. Watarai, E. Sekine, S. Inoue, R. Nakagawa, T. Kaisho, and M. Taniguchi, “PDC-TREM, a plasmacytoid dendritic cell-specific receptor, is responsible for augmented production of type I interferon,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 8, pp. 2993–2998, 2008. View at Publisher · View at Google Scholar · View at PubMed
  7. A. Ahmad and F. Alvarez, “Role of NK and NKT cells in the immunopathogenesis of HCV-induced hepatitis,” Journal of Leukocyte Biology, vol. 76, no. 4, pp. 743–759, 2004. View at Publisher · View at Google Scholar · View at PubMed
  8. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at PubMed
  9. D. Kägi, F. Vignaux, B. Ledermann, et al., “Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity,” Science, vol. 265, no. 5171, pp. 528–530, 1994.
  10. H. Kojima, N. Shinohara, S. Hanaoka, et al., “Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes,” Immunity, vol. 1, no. 5, pp. 357–364, 1994.
  11. K. Ando, K. Hiroishi, T. Kaneko, et al., “Perforin, Fas/Fas ligand, and TNF-α pathways as specific and bystander killing mechanisms of hepatitis C virus-specific human CTL,” Journal of Immunology, vol. 158, no. 11, pp. 5283–5291, 1997.
  12. K. Ando, T. Moriyama, L. G. Guidotti, et al., “Mechanisms of class I restricted immunopathology. A transgenic mouse model of fulminant hepatitis,” Journal of Experimental Medicine, vol. 178, no. 5, pp. 1541–1554, 1993. View at Publisher · View at Google Scholar
  13. H. Doi, K. Hiroishi, T. Shimazaki, et al., “Magnitude of CD8+ T-cell responses against hepatitis C virus and severity of hepatitis do not necessarily determine outcomes in acute hepatitis C virus infection,” Hepatology Research, vol. 39, no. 3, pp. 256–265, 2009. View at Publisher · View at Google Scholar · View at PubMed
  14. G. M. Lauer, E. Barnes, M. Lucas, et al., “High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection,” Gastroenterology, vol. 127, no. 3, pp. 924–936, 2004. View at Publisher · View at Google Scholar
  15. D. Yerly, D. Heckerman, T. M. Allen, et al., “Increased cytotoxic T-lymphocyte epitope variant cross-recognition and functional avidity are associated with hepatitis C virus clearance,” Journal of Virology, vol. 82, no. 6, pp. 3147–3153, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. K. Hiroishi, H. Kita, M. Kojima, et al., “Cytotoxic T lymphocyte response and viral load in hepatitis C virus infection,” Hepatology, vol. 25, no. 3, pp. 705–712, 1997. View at Publisher · View at Google Scholar · View at PubMed
  17. S. Zeuzem, “Hepatitis C virus: kinetics and quasispecies evolution during anti-viral therapy,” Forum, vol. 10, no. 1, pp. 32–42, 2000.
  18. S. Guglietta, A. R. Garbuglia, L. Salichos, et al., “Impact of viral selected mutations on T cell mediated immunity in chronically evolving and self limiting acute HCV infection,” Virology, vol. 386, no. 2, pp. 398–406, 2009. View at Publisher · View at Google Scholar · View at PubMed
  19. A. L. Hughes, M. A. K. Hughes, and R. Friedman, “Variable intensity of purifying selection on cytotoxic T-lymphocyte epitopes in hepatitis C virus,” Virus Research, vol. 123, no. 2, pp. 147–153, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. A. Maki, M. Matsuda, M. Asakawa, H. Kono, H. Fujii, and Y. Matsumoto, “Decreased CD3 ζ molecules of T lymphocytes from patients with hepatocellular carcinoma associated with hepatitis C virus,” Hepatology Research, vol. 27, no. 4, pp. 272–278, 2003. View at Publisher · View at Google Scholar
  21. G. Missale, E. Cariani, and C. Ferrari, “Role of viral and host factors in HCV persistence: which lesson for therapeutic and preventive strategies?” Digestive and Liver Disease, vol. 36, no. 11, pp. 703–711, 2004. View at Publisher · View at Google Scholar · View at PubMed
  22. V. Francavilla, D. Accapezzato, M. De Salvo, et al., “Subversion of effector CD8+ T cell differentiation in acute hepatitis C virus infection: exploring the immunological mechanisms,” European Journal of Immunology, vol. 34, no. 2, pp. 427–437, 2004. View at Publisher · View at Google Scholar · View at PubMed
  23. S. Urbani, B. Amadei, D. Tola, et al., “PD-1 expression in acute hepatitis C virus (HCV) infection is associated with HCV-specific CD8 exhaustion,” Journal of Virology, vol. 80, no. 22, pp. 11398–11403, 2006. View at Publisher · View at Google Scholar · View at PubMed
  24. L. Golden-Mason, B. Palmer, J. Klarquist, J. A. Mengshol, N. Castelblanco, and H. R. Rosen, “Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction,” Journal of Virology, vol. 81, no. 17, pp. 9249–9258, 2007. View at Publisher · View at Google Scholar · View at PubMed
  25. L. Golden-Mason, J. Klarquist, A. S. Wahed, and H. R. Rosen, “Cutting edge: programmed death-1 expression is increased on immunocytes in chronic hepatitis C virus and predicts failure of response to antiviral therapy: race-dependent differences,” Journal of Immunology, vol. 180, no. 6, pp. 3637–3641, 2008.
  26. N. Nakamoto, H. Cho, A. Shaked, et al., “Synergistic reversal of intrahepatic HCV-specific CD8 T cell exhaustion by combined PD-1/CTLA-4 blockade,” PLoS Pathogens, vol. 5, no. 2, Article ID e1000313, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. M. Kriegs, T. Bürckstümmer, K. Himmelsbach, et al., “The hepatitis C virus non-structural NS5A protein impairs both the innate and adaptive hepatic immune response in vivo,” Journal of Biological Chemistry, vol. 284, no. 41, pp. 28343–28351, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. Z. Q. Yao, D. T. Nguyen, A. I. Hiotellis, and Y. S. Hahn, “Hepatitis C virus core protein inhibits human T lymphocyte responses by a complement-dependent regulatory pathway,” Journal of Immunology, vol. 167, no. 9, pp. 5264–5272, 2001.
  29. D. J. Kittlesen, K. A. Chianese-Bullock, Z. Q. Yao, T. J. Braciale, and Y. S. Hahn, “Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation,” Journal of Clinical Investigation, vol. 106, no. 10, pp. 1239–1249, 2000.
  30. Z. Q. Yao, A. Eisen-Vandervelde, S. Ray, and Y. S. Hahn, “HCV core/gC1qR interaction arrests T cell cycle progression through stabilization of the cell cycle inhibitor p27Kip1,” Virology, vol. 314, no. 1, pp. 271–282, 2003. View at Publisher · View at Google Scholar
  31. K. V. Konan, T. H. Giddings Jr., M. Ikeda, K. Li, S. M. Lemon, and K. Kirkegaard, “Nonstructural protein precursor NS4A/B from hepatitis C virus alters function and ultrastructure of host secretory apparatus,” Journal of Virology, vol. 77, no. 14, pp. 7843–7855, 2003. View at Publisher · View at Google Scholar
  32. P. Sarobe, J. J. Lasarte, A. Zabaleta, et al., “Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses,” Journal of Virology, vol. 77, no. 20, pp. 10862–10871, 2003. View at Publisher · View at Google Scholar
  33. G. Szabo and A. Dolganiuc, “Subversion of plasmacytoid and myeloid dendritic cell functions in chronic HCV infection,” Immunobiology, vol. 210, no. 2–4, pp. 237–247, 2005. View at Publisher · View at Google Scholar
  34. P.-Y. Lozach, H. Lortat-Jacob, A. de Lacroix de Lavalette, et al., “DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2,” Journal of Biological Chemistry, vol. 278, no. 22, pp. 20358–20366, 2003. View at Publisher · View at Google Scholar · View at PubMed
  35. S. Pöhlmann, J. Zhang, F. Baribaud, et al., “Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR,” Journal of Virology, vol. 77, no. 7, pp. 4070–4080, 2003. View at Publisher · View at Google Scholar