About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 283842, 10 pages
http://dx.doi.org/10.1155/2010/283842
Research Article

Improved Method for In Vitro Secondary Amastigogenesis of Trypanosoma cruzi: Morphometrical and Molecular Analysis of Intermediate Developmental Forms

1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, Col San Pedro Zacatenco, 07360 México, DF, Mexico
2Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, 68020 Oaxaca, Mexico
3FES Iztacala, UBIMED, UNAM, 54090 Edo. de México, Mexico
4Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 México, DF, Mexico

Received 10 June 2009; Revised 10 September 2009; Accepted 21 September 2009

Academic Editor: Luis I. Terrazas

Copyright © 2010 L. A. Hernández-Osorio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Almeida-De-Faria, E. Freymuller, W. Colli, and M. J. Alves, “Trypanosoma cruzi: characterization of an intracellular epimastigote-like form,” Experimental Parasitology, vol. 92, no. 4, pp. 263–274, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. K. M. Tyler and D. M. Engman, “The life cycle of Trypanosoma cruzi revisited,” International Journal for Parasitology, vol. 31, no. 5-6, pp. 472–481, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. N. W. Andrews, K. S. Hong, E. S. Robbins, and V. Nussenzweig, “Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of Trypanosoma cruzi,” Experimental Parasitology, vol. 64, no. 3, pp. 474–484, 1987.
  4. A. R. Avila, B. Dallagiovanna, S. F. Yamada-Ogatta, et al., “Stage-specific gene expression during Trypanosoma cruzi metacyclogenesis,” Genetics and Molecular Research, vol. 2, no. 1, pp. 159–168, 2003.
  5. M. C. Navarro, A. R. De Lima, J. Askue, and V. T. Contreras, “Morphological comparison of axenic amastigogenesis of trypomastigotes and metacyclic forms of Trypanosoma cruzi,” Memórias do Instituto Oswaldo Cruz, vol. 98, no. 1, pp. 83–91, 2003.
  6. V. T. Contreras, M. C. Navarro, A. R. De Lima, et al., “Production of amastigotes from metacyclic trypomastigotes of Trypanosoma cruzi,” Memorias do Instituto Oswaldo Cruz, vol. 97, no. 8, pp. 1213–1220, 2002.
  7. T. A. Minning, J. Bua, G. A. Garcia, R. A. Mcgraw, and R. L. Tarleton, “Microarray profiling of gene expression during trypomastigote to amastigote transition in Trypanosoma cruzi,” Molecular and Biochemical Parasitology, vol. 131, no. 1, pp. 55–64, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Tomlinson, F. Vandekerckhove, U. Frevert, and V. Nussenzweig, “The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH,” Parasitology, vol. 110, part 5, pp. 547–554, 1995.
  9. B. A. Burleigh and N. W. Andrews, “The mechanisms of Trypanosoma cruzi invasion of mammalian cells,” Annual Review of Microbiology, vol. 49, pp. 175–200, 1995. View at Scopus
  10. N. Nogueira and Z. Cohn, “Trypanosoma cruzi: mechanism of entry and intracellular fate in mammalian cells,” The Journal of Experimental Medicine, vol. 143, pp. 1402–1420, 1976.
  11. M. M. Piras, R. Piras, D. Henriquez, and S. Negri, “Changes in morphology and infectivity of cell culture-derived trypomastigotes of Trypanosoma cruzi,” Molecular and Biochemical Parasitology, vol. 6, pp. 67–81, 1982.
  12. R. D. Ribeiro, R. A. Lopes, T. A. Garcia, and A. A. Carraro, “A new aspect of the morphological transformation of Trypanosoma cruzi brought about by environmental variation,” Angewandte Parasitologie, vol. 31, no. 4, pp. 207–210, 1990. View at Scopus
  13. P. M. Schettino, S. Majumder, and F. Kierszenbaum, “Regulatory effect of the level of free Ca2+ of the host cell on the capacity of Trypanosoma cruzi to invade and multiply intracellularly,” The Journal of Parasitology, vol. 81, pp. 597–602, 1995.
  14. A. Zaidenberg, H. Tournier, G. Schinella, and H. Buschiazzo, “Trypanosoma cruzi: influence of human plasma on the morphogenesis of blood trypomastigotes in a cell-free culture media,” Revista Latinoamericana de Microbiologia, vol. 37, pp. 71–77, 1995.
  15. E. Zweygarth, I. D. Gumm, M. A. Gray, J. K. Cheruiyot, P. Webster, and R. Kaminsky, “In vitro development of metacyclic Trypanosoma simiae derived from bloodstream trypomastigotes,” Acta Tropica, vol. 46, pp. 277–282, 1989.
  16. R. Manning-Cela, A. Cortes, E. Gonzalez-Rey, W. C. Van Voorhis, J. Swindle, and A. Gonzalez, “LYT1 protein is required for efficient in vitro infection by Trypanosoma cruzi,” Infection and Immunity, vol. 69, pp. 3916–3923, 2001.
  17. W. De Souza, “Basic cell biology of Trypanosoma cruzi,” Current Pharmaceutical Design, vol. 8, pp. 269–285, 2002.
  18. S. C. Bourguignon, C. B. Mello, D. O. Santos, M. S. Gonzalez, and T. Souto-Padron, “Biological aspects of the Trypanosoma cruzi (Dm28c clone) intermediate form, between epimastigote and trypomastigote, obtained in modified liver infusion tryptose (LIT) medium,” Acta Tropica, vol. 98, pp. 103–109, 2006.
  19. V. T. Contreras, J. M. Salles, N. Thomas, C. M. Morel, and S. Goldenberg, “In vitro differentiation of Trypanosoma cruzi under chemically defined conditions,” Molecular and Biochemical Parasitology, vol. 16, pp. 315–327, 1985.
  20. A. H. Kollien and G. A. Schaub, “The development of Trypanosoma cruzi in triatominae,” Parasitology Today, vol. 16, no. 9, pp. 381–387, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. R. A. Mortara, L. M. Minelli, F. Vandekerckhove, V. Nussenzweig, and F. J. Ramalho-Pinto, “Phosphatidylinositol-specific phospholipase C (PI-PLC) cleavage of GPI-anchored surface molecules of Trypanosoma cruzi triggers in vitro morphological reorganization of trypomastigotes,” The Journal of Eukaryotic Microbiology, vol. 48, no. 1, pp. 27–37, 2001. View at Scopus
  22. M. J. Soares, T. Souto-Padron, M. C. Bonaldo, S. Goldenberg, and W. De Souza, “A stereological study of the differentiation process in Trypanosoma cruzi,” Parasitology Research, vol. 75, no. 7, pp. 522–527, 1989. View at Scopus
  23. Z. Brener, “Biology of Trypanosoma cruzi,” Annual Review of Microbiology, vol. 27, pp. 347–382, 1973. View at Scopus
  24. H. Meyer, M. De Oliveira Musacchio, and I. De Andrade Mendonca, “Electron microscopic study of Trypanosoma cruzi in thin sections of infected tissue cultures and of blood-agar forms,” Parasitology, vol. 48, pp. 1–8, 1958.
  25. D. B. Budzko, M. C. Pizzimenti, and F. Kierszenbaum, “Effects of complement depletion in experimental chagas disease: immune lysis of virulent blood forms of Trypanosoma cruzi,” Infection and Immunity, vol. 11, no. 1, pp. 86–91, 1975.
  26. I. Mota and L. F. Umekita, “The effect of C3 depletion on the clearance of Trypanosoma cruzi induced by IgG antibodies,” Immunology Letters, vol. 21, no. 3, pp. 223–226, 1989. View at Scopus
  27. N. Nogueira, C. Bianco, and Z. Cohn, “Studies on the selective lysis and purification of Trypanosoma cruzi,” The Journal of Experimental Medicine, vol. 142, pp. 224–229, 1975.
  28. V. Ferreira, C. Valck, G. Sanchez, et al., “The classical activation pathway of the human complement system is specifically inhibited by calreticulin from Trypanosoma cruzi,” The Journal of Immunology, vol. 172, pp. 3042–3050, 2004.
  29. K. Iida, M. B. Whitlow, and V. Nussenzweig, “Amastigotes of Trypanosoma cruzi escape destruction by the terminal complement components,” The Journal of Experimental Medicine, vol. 169, pp. 881–891, 1989.
  30. K. A. Norris, B. Bradt, N. R. Cooper, and M. So, “Characterization of a Trypanosoma cruzi C3 binding protein with functional and genetic similarities to the human complement regulatory protein, decay-accelerating factor,” The Journal of Immunology, vol. 147, no. 7, pp. 2240–2247, 1991. View at Scopus