About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 314213, 11 pages
http://dx.doi.org/10.1155/2010/314213
Research Article

Electrodelivery of Drugs into Cancer Cells in the Presence of Poloxamer 188

1Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 21, 1113 Sofia, Bulgaria
2German Cancer Research Center, Toxicology and Chemotherapy Unit, Im Neuenheimer Feld 280, 69 120 Heidelberg, Germany
3Centre of Biomedical Engineering “Prof. Ivan Daskalov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, Building 103, 1113 Sofia, Bulgaria

Received 13 October 2009; Revised 7 April 2010; Accepted 10 June 2010

Academic Editor: Sonshin Takao

Copyright © 2010 Iana Tsoneva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Saulis, “The loading of human erythrocytes with small molecules by electroporation,” Cellular and Molecular Biology Letters, vol. 10, no. 1, pp. 23–35, 2005. View at Scopus
  2. O. Tounekti, G. Pron, J. Belehradek Jr., and L. M. Mir, “Bleomycin, an apoptosis-mimetic drug that induces two types of cell death depending on the number of molecules internalized,” Cancer Research, vol. 53, no. 22, pp. 5462–5469, 1993. View at Scopus
  3. M. J. Jaroszeski, V. Dang, C. Pottinger, J. Hickey, R. Gilbert, and R. Heller, “Toxicity of anticancer agents mediated by electroporation in vitro,” Anti-Cancer Drugs, vol. 11, no. 3, pp. 201–208, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Tsoneva, B. Nikolova, M. Georgieva et al., “Induction of apoptosis by electrotransfer of positively charged proteins as Cytochrome C and histone H1 into cells,” Biochimica et Biophysica Acta, vol. 1721, no. 1-3, pp. 55–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. E. Neumann, S. Kakorin, I. Tsoneva, B. Nikolova, and T. Tomov, “Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation,” Biophysical Journal, vol. 71, no. 2, pp. 868–877, 1996. View at Scopus
  6. L. M. Mir, L. F. Glass, G. Sersa et al., “Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy,” British Journal of Cancer, vol. 77, no. 12, pp. 2336–2342, 1998. View at Scopus
  7. G. Serša, B. Štabuc, M. Čemažar, D. Miklavčič, and Z. Rudolf, “Electrochemotherapy with cisplatin: the systemic antitumour effectiveness of cisplatin can be potentiated locally by the application of electric pulses in the treatment of malignant melanoma skin metastases,” Melanoma Research, vol. 10, no. 4, pp. 381–385, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Peycheva, I. Daskalov, and I. Tsoneva, “Electrochemotherapy of Mycosis fungoides by interferon-α,” Bioelectrochemistry, vol. 70, no. 2, pp. 283–286, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Heller, K. Merkler, J. Westover et al., “Evaluation of toxicity following electrically mediated interleukin-12 gene delivery in a B16 mouse melanoma model,” Clinical Cancer Research, vol. 12, no. 10, pp. 3177–3183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Zhou, J. E. Norton, N. Zhang, and D. A. Dean, “Electroporation-mediated transfer of plasmids to the lung results in reduced TLR9 signaling and inflammation,” Gene Therapy, vol. 14, no. 9, pp. 775–780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. E. P. Spugnini and A. Porrello, “Potentiation of chemotherapy in companion animals with spontaneous large neoplasm by application of bipolar electric pulse,” Journal of Experimental and Clinical Cancer Research, vol. 22, no. 4, pp. 571–580, 2003. View at Scopus
  12. E. P. Spugnini, G. Citro, and A. Porrello, “Rational design of new electrodes for electrochemotherapy,” Journal of Experimental and Clinical Cancer Research, vol. 24, no. 2, pp. 245–254, 2005. View at Scopus
  13. E. P. Spugnini, E. Dragonetti, B. Vincenzi, N. Onori, G. Citro, and A. Baldi, “Pulse-mediated chemotherapy enhances local control and survival in a spontaneous canine model of primary mucosal melanoma,” Melanoma Research, vol. 16, no. 1, pp. 23–27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. P. Spugnini, A. Baldi, B. Vincenzi et al., “Intraoperative versus postoperative electrochemotherapy in high grade soft tissue sarcomas: a preliminary study in a spontaneous feline model,” Cancer Chemotherapy and Pharmacology, vol. 59, no. 3, pp. 375–381, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. P. Spugnini, B. Vincenzi, F. Baldi, G. Citro, and A. Baldi, “Adjuvant electrochemotherapy for the treatment of incompletely resected canine mast cell tumors,” Anticancer Research, vol. 26, no. 6B, pp. 4585–4589, 2006. View at Scopus
  16. E. P. Spugnini, G. Citro, A. D'Avino, and A. Baldi, “Potential role of electrochemotherapy for the treatment of soft tissue sarcoma: first insights from preclinical studies in animals,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 2, pp. 159–163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. E. P. Spugnini, G. Citro, P. Mellone, I. Dotsinsky, N. Mudrov, and A. Baldi, “Electrochemotherapy for localized lymphoma: a preliminary study in companion animals,” Journal of Experimental and Clinical Cancer Research, vol. 26, no. 3, pp. 343–346, 2007. View at Scopus
  18. E. P. Spugnini, F. Baldi, P. Mellone et al., “Patterns of tumor response in canine and feline cancer patients treated with electrochemotherapy: preclinical data for the standardization of this treatment in pets and humans,” Journal of Translational Medicine, vol. 5, pp. 48–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. D. M. Soden, J. O. Larkin, C. G. Collins et al., “Successful application of targeted electrochemotherapy using novel flexible electrodes and low dose bleomycin to solid tumours,” Cancer Letters, vol. 232, no. 2, pp. 300–310, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. F. Glass, M. Jaroszeski, R. Gilbert, D. S. Reintgen, and R. Heller, “Intralesional bleomycin-mediated electrochemotherapy in 20 patients with basal cell carcinoma,” Journal of the American Academy of Dermatology, vol. 37, no. 4, pp. 596–599, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Rebersek, T. Cufer, M. Cemazar, S. Kranjc, and G. Sersa, “Electrochemotherapy with cisplatin of cutaneous tumor lesions in breast cancer,” Anti-Cancer Drugs, vol. 15, no. 6, pp. 593–597, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. D. Marks, W. Cromie, and R. Lee, “Nonionic surfactant prevent NMDA-induced death in cultured hippocampal neurons,” Society for Neuroscience Abstracts, vol. 24, no. 1, p. 462, 1998.
  23. F. A. Merchant, W. H. Holmes, M. Capelli-Schellpfeffer, R. C. Lee, and M. Toner, “Poloxamer 188 enhances functional recovery of lethally heat-shocked fibroblasts,” Journal of Surgical Research, vol. 74, no. 2, pp. 131–140, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. R. C. Lee, L. P. River, F.-S. Pan, L. Ji, and R. L. Wollmann, “Surfactant-induced sealing of electropermeabilized skeletal muscle membranes in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 10, pp. 4524–4528, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. J. D. Marks, C. Y. Pan, T. Bushell, W. Cromie, and R. C. Lee, “Amphiphilic, tri-block copolymers provide potent membrane-targeted neuroprotection,” The FASEB Journal, vol. 15, no. 6, pp. 1107–1109, 2001. View at Scopus
  26. P. Liu-Snyder, M. P. Logan, R. Shi, D. T. Smith, and R. B. Borgens, “Neuroprotection from secondary injury by polyethylene glycol requires its internalization,” Journal of Experimental Biology, vol. 210, no. 8, pp. 1455–1462, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Jordanova, Surface properties and behavior of lipid liquid crystal faces, Ph.D. thesis, Sofia, Bulgaria, 2006.
  28. S. A. Maskarinec, G. Wu, and K. Y. Lee, “Membrane sealing by polymers,” Annals of the New York Academy of Sciences, vol. 1066, pp. 310–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Scopus
  30. S. M. Konstantinov, H. Eibl, and M. R. Berger, “Alkylphosphocholines induce apoptosis in HL-60 and U-937 leukemic cells,” Cancer Chemotherapy and Pharmacology, vol. 41, no. 3, pp. 210–216, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Pucihar, T. Kotnik, J. Teissié, and D. Miklavčič, “Electropermeabilization of dense cell suspensions,” European Biophysics Journal, vol. 36, no. 3, pp. 173–185, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. T. C. Tomov, “Quantitative dependence of electroporation on the pulse parameters,” Bioelectrochemistry and Bioenergetics, vol. 37, no. 2, pp. 101–107, 1995. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Collins, F. Despa, and R. C. Lee, “Structural and functional recovery of electropermeabilized skeletal muscle in-vivo after treatment with surfactant poloxamer 188,” Biochimica et Biophysica Acta, vol. 1768, no. 5, pp. 1238–1246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Daskalov, N. Mudrov, and E. Peycheva, “Exploring new instrumentation parameters for electrochemotherapy: attacking tumors with bursts of biphasic pulses instead of single pulses,” IEEE Engineering in Medicine and Biology Magazine, vol. 18, no. 1, pp. 62–66, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. A. V. Kabanov, I. R. Nazarova, I. V. Astafieva et al., “Micelle formation and solubilization of fluorescent probes in poly(oxyethylene-b-oxypropylene-b-oxyethylene) solutions,” Macromolecules, vol. 28, no. 7, pp. 2303–2314, 1995. View at Scopus
  36. P. Alexandridis and T. A. Hatton, “Poly(ethylene oxide)poly(propylene oxide)poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling,” Colloids and Surfaces A, vol. 96, no. 1-2, pp. 1–46, 1995. View at Scopus
  37. P. J. Photos, H. Bermudez, H. Aranda-Espinoza, J. Shillcock, and D. E. Discher, “Nuclear pores and membrane holes: generic models for confined chains and entropic barriers in pore stabilization,” Soft Matter, vol. 3, no. 3, pp. 364–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. D. J. Curry, D. A. Wright, R. C. Lee, U. J. Kang, and D. M. Frim, “Surfactant poloxamer 188-related decreases in inflammation and tissue damage after experimental brain injury in rats,” Journal of Neurosurgery, vol. 101, no. 1, supplement, pp. 91–96, 2004.