About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 341783, 9 pages
http://dx.doi.org/10.1155/2010/341783
Review Article

Immunological and Therapeutic Strategies against Salmonid Cryptobiosis

Department of Integrative Biology, University of Guelph, Guelph, ON, Canada N1G 2W1

Received 1 August 2009; Accepted 18 September 2009

Academic Editor: Luis I. Terrazas

Copyright © 2010 Patrick T. K. Woo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. T. K. Woo, “Protective immunity in fish against protozoan diseases,” Parassitologia, vol. 49, no. 3, pp. 185–191, 2007. View at Scopus
  2. P. T. K. Woo, D. W. Bruno, and L. H. S. Lim, Diseases and Disorders of Finfish in Cage Culture, CABI, Wallingford, UK, 2002.
  3. W. B. Van Muiswinkel and B. Vervoorn-Van Der Wal, “The immune system of fish,” in Fish Diseases and Disorders, Volume 1: Protozoan and Metazoan Infections, P. T. K. Woo, Ed., pp. 678–701, CABI, Wallingford, UK, 2nd edition, 2006.
  4. B. F. Ardelli and P. T. K. Woo, “Immunocompetent cells and their mediators in Fin Fish,” in Fish Diseases and Disorders, Volume 1: Protozoan and Metazoan Infections, P. T. K. Woo, Ed., pp. 702–724, CABI, Wallingford, UK, 2nd edition, 2006.
  5. P. T. K. Woo, “Cryptobia (Trypanoplasma) salmositica and salmonid cryptobiosis,” Journal of Fish Diseases, vol. 26, no. 11-12, pp. 627–646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. T. K. Woo, “Diplomonadida (Phylum Parabasalia) and Kinetoplastea (Phylum Euglenozoa),” in Fish Diseases and Disorders, Volume 1: Protozoan and Metazoan Infections, P. T. K. Woo, Ed., pp. 46–115, CABI, Wallingford, UK, 2nd edition, 2006.
  7. P. T. K. Woo, “Trypanoplasma salmositica: experimental infections in rainbow trout, Salmo gairdneri,” Experimental Parasitology, vol. 47, no. 1, pp. 36–48, 1979. View at Scopus
  8. S. Li and P. T. K. Woo, “Efficacy of a live Cryptobia salmositica vaccine, and the mechanism of protection in vaccinated rainbow trout, Oncorhynchus mykiss, against cryptobiosis,” Veterinary Immunology and Immunopathology, vol. 48, no. 3-4, pp. 343–353, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. B. F. Ardelli and P. T. K. Woo, “Experimental Cryptobia salmositica (Kinetoplastida) infections in Atlantic salmon, Salmo salar L.: cell-mediated and humoral immune responses against the pathogenic and vaccine strains of the parasite,” Journal of Fish Diseases, vol. 25, no. 5, pp. 265–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Li and P. T. K. Woo, “Anorexia reduces the severity of cryptobiosis in Oncorhynchus mykiss,” Journal of Parasitology, vol. 77, no. 3, pp. 467–471, 1991. View at Scopus
  11. P. T. Thomas and P. T. K. Woo, “Anorexia in Oncorhynchus mykiss (Walbaum) infected with Cryptobia salmositica (Sarcomastigophora, Kinetoplastida), its onset and contribution to the immunodepression,” Journal of Fish Diseases, vol. 15, pp. 443–447, 1992.
  12. S. R. M. Jones, P. T. K. Woo, and R. M. W. Stevenson, “Immunosuppression in rainbow trout, Salmo gairdneri Richardson, caused by the haemoflagellate Cryptobia salmositica Katz, 1951,” Journal of Fish Diseases, vol. 9, no. 5, pp. 431–438, 1986.
  13. P. T. Thomas and P. T. K. Woo, “Complement activity in Salmo gairdneri Richardson infected with Cryptobia salmositica and its relationship to the anaemia in cryptobiosis,” Journal of Fish Diseases, vol. 12, pp. 395–397, 1989.
  14. C. W. Laidley, P. T. K. Woo, and J. F. Leatherland, “The stress response of rainbow trout to experimental infection with the blood parasite, Cryptobia salmositica Katz, 1951,” Journal of Fish Biology, vol. 32, pp. 253–261, 1988.
  15. A. K. Kumaraguru, F. W. Beamish, and P. T. K. Woo, “Impact of a pathogenic haemoflagellate, Cryptobia salmositica Katz, on the metabolism and swimming performance of rainbow trout, Oncorhynchus mykiss (Walbaum),” Journal of Fish Diseases, vol. 18, no. 4, pp. 297–305, 1995. View at Scopus
  16. F. W. H. Beamish, A. Sitja-Bobadilla, J. A. Jebbink, and P. T. K. Woo, “Bioenergetic cost of cryptobiosis in fish: rainbow trout Oncorhynchus mykiss infected with Cryptobia salmositica and with an attenuated live vaccine,” Diseases of Aquatic Organisms, vol. 25, no. 1-2, pp. 1–8, 1996. View at Scopus
  17. X. Zuo and P. T. K. Woo, “Proteases in pathogenic and nonpathogenic haemoflagellates, Cryptobia spp. (Sarcomastigophora: Kinetoplastida), of fishes,” Disease of Aquatic Organisms, vol. 29, no. 1, pp. 57–65, 1997. View at Scopus
  18. X. Zuo and P. T. K. Woo, “Purified metalloprotease from the pathogenic haemoflagellate, Cryptobia salmositica, and its in vitro proteolytic activities,” Diseases of Aquatic Organisms, vol. 30, pp. 177–185, 1997.
  19. X. Zuo and P. T. K. Woo, “Characterization of purified metallo- and cysteine proteases from the pathogenic haemoflagellate Cryptobia salmositica Katz 1951,” Parasitology Research, vol. 84, no. 6, pp. 492–498, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Zuo and P. T. K. Woo, “In vitro haemolysis of piscine erythrocytes by purified metallo-protease from the pathogenic haemoflagellate, Cryptobia salmositica Katz,” Journal of Fish Diseases, vol. 23, no. 3, pp. 227–230, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Zuo and P. T. K. Woo, “In vivo neutralization of Cryptobia salmositica metallo-protease by α2-macroglobulin in the blood of rainbow trout Oncorhynchus mykiss and in brook charr Salvelinus fontinalis,” Disease of Aquatic Organisms, vol. 29, no. 1, pp. 67–72, 1997. View at Scopus
  22. M. Bahmanrokh and P. T. K. Woo, “Relations between histopathology and parasitaemias in Oncorhynchus mykiss infected with Cryptobia salmositica, a pathogenic haemoflagellate,” Diseases of Aquatic Organisms, vol. 46, no. 1, pp. 41–45, 2001. View at Scopus
  23. S. Feng and P. T. K. Woo, “Therapeutic and prophylactic effects of a protective monoclonal antibody (MAb-001) against the pathogenic haemoflagellate Cryptobia salmositic,” Disease of Aquatic Organisms, vol. 28, no. 3, pp. 211–219, 1997. View at Scopus
  24. S. Feng and P. T. K. Woo, “Biological characterization of a monoclonal antibody against a surface membrane antigen on Cryptobia salmositica Katz, 1951,” Journal of Fish Diseases, vol. 19, no. 2, pp. 137–143, 1996. View at Scopus
  25. N. Hontzeas, S. Feng, and P. T. K. Woo, “Inhibitory effects of a monoclonal antibody (MAb-001) on in vitro oxygen consumption and multiplication of the pathogenic haemoflagellate, Cryptobia salmositica Katz,” Journal of Fish Diseases, vol. 24, no. 7, pp. 391–398, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Zuo, S. Feng, and P. T. K. Woo, “The in vitro inhibition of proteases from Cryptobia salmositica Katz by a monoclonal antibody (MAb-001) against a glycoprotein on the pathogenic haemoflagellate,” Journal of Fish Diseases, vol. 20, no. 6, pp. 419–426, 1997. View at Scopus
  27. S. Feng and P. T. K. Woo, “Characterization of a 200 kDa glycoprotein (Cs-gp200) on the pathogenic piscine haemoflagellate Cryptobia salmositica,” Diseases of Aquatic Organisms, vol. 32, no. 1, pp. 41–48, 1998. View at Scopus
  28. S. Feng and P. T. K. Woo, “Biochemical characterisation of an epitope on the surface membrane antigen (Cs-gp200) of the pathogenic piscine haemoflagellate Cryptobia salmositica Katz 1951,” Experimental Parasitology, vol. 88, no. 1, pp. 3–10, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Feng and P. T. K. Woo, “Cell membrane glycoconjugates on virulent and avirulent strains of the haemoflagellate Cryptobia salmositica (Kinetoplastida),” Journal of Fish Diseases, vol. 24, no. 1, pp. 23–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. G. M. Forward, M. M. Ferguson, and P. K. T. Woo, “Susceptibility of brook charr, Salvelinus fontinalis to the pathogenic haemoflagellate, Cryptobia salmositica, and the inheritance of innate resistance by progenies of resistant fish,” Parasitology, vol. 111, no. 3, pp. 337–345, 1995. View at Scopus
  31. G. M. Forward and P. T. K. Woo, “An in vitro study on the mechanism of innate immunity in Cryptobia-resistant brook char (Salvelinus fontinalis) against Cryptobia salmositica,” Parasitology Research, vol. 82, no. 3, pp. 238–241, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. B. F. Ardelli and P. T. K. Woo, “Immune response of Cryptobia-resistant and Cryptobia-susceptible Salvelinus fontinalis to an Aeromonas salmonicida vaccine,” Diseases of Aquatic Organisms, vol. 23, no. 1, pp. 33–38, 1995. View at Scopus
  33. X. Zuo and P. T. K. Woo, “Natural anti-proteases in rainbow trout, Oncorhynchus mykiss and brook charr, Salvelinus fontinalis and the in vitro neutralization of fish α2-macroglobulin by the metalloprotease from the pathogenic haemoffagelIate, Cryptobia salmositica,” Parasitology, vol. 114, no. 4, pp. 375–382, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. P. T. K. Woo and S. Li, “In vitro attenuation of Cryptobia salmositica and its use as a live vaccine against cryptobiosis in Oncorhynchus mykiss,” Journal of Parasitology, vol. 76, no. 5, pp. 752–755, 1990. View at Scopus
  35. P. T. K. Woo and P. T. Thomas, “Polypeptide and antigen profiles of Cryptobia salmositica, C. bullocki and C. catostomi (Kinetoplastida, Sarcomastigophora) isolated from fishes,” Diseases of Aquatic Organisms, vol. 11, pp. 201–205, 1991.
  36. P. T. K. Woo and P. T. Thomas, “Comparative in vitro studies on virulent and avirulent strains of Cryptobia salmositica Katz, 1951 (Sarcomastigophora, Kinetoplastida),” Journal of Fish Diseases, vol. 15, pp. 261–266, 1992.
  37. A. Sitja-Bobadilla and P. T. K. Woo, “An enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against the pathogenic haemoflagellate, Cryptobia salmositica Katz, and protection against cryptobiosis in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), inoculated with a live vaccine,” Journal of Fish Diseases, vol. 17, no. 4, pp. 399–408, 1994. View at Scopus
  38. S. Feng and P. T. K. Woo, “Complement fixing antibody production in thymectomized Oncorhynchus mykiss, vaccinated against or infected with the pathogenic haemoflagellate Cryptobia salmositica,” Folia Parasitologica, vol. 44, no. 3, pp. 188–194, 1997. View at Scopus
  39. S. Feng and P. T. K. Woo, “In vitro and in vivo effects of rabbit anti-thymocyte serum on circulating leucocytes and production of complement fixing antibodies in thymectomized Oncorhynchus mykiss (Walbaum) infected with Cryptobia salmositica Katz, 1951,” Journal of Fish Diseases, vol. 21, no. 4, pp. 241–248, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Mehta and P. T. K. Woo, “Acquired cell-mediated protection in rainbow trout, Oncorhynchus mykiss, against the haemoflagellate, Cryptobia salmositica,” Parasitology Research, vol. 88, no. 11, pp. 956–962, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Chin, B. D. Glebe, and P. T. K. Woo, “Humoral response and susceptibility of five full-sib families of Atlantic salmon, Salmo salar L., to the haemoflagellate, Cryptobia salmositica,” Journal of Fish Diseases, vol. 27, no. 8, pp. 471–481, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Li and P. T. K. Woo, “Vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against cryptobiosis: efficacy of the vaccine in fresh and sea water,” Journal of Fish Diseases, vol. 20, no. 5, pp. 369–374, 1997. View at Scopus
  43. S. Feng and P. T. K. Woo, “Cell-mediated immune response and T-like cells in thymectomized Oncorhynchus mykiss (Walbaum) infected with or vaccinated against the pathogenic haemoflagellate Cryptobia salmositica Katz, 1951,” Parasitology Research, vol. 82, no. 7, pp. 604–611, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. B. F. Ardelli and P. T. K. Woo, “The in vitro effects of isometamidium chloride (Samorin) on the piscine hemoflagellate Cryptobia salmositica (Kinetoplastida, Bodonina),” Journal of Parasitology, vol. 87, no. 1, pp. 194–202, 2001. View at Scopus
  45. P. R. R. Jesudhasan, C.-W. Tan, and P. T. K. Woo, “A metalloproteinase gene from the pathogenic piscine hemoflagellate, Cryptobia salmositica,” Parasitology Research, vol. 100, no. 4, pp. 899–904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. P. R. R. Jesudhasan, C. W. Tan, N. Hontzeas, and P. T. K. Woo, “A cathepsin L-like cysteine proteinase gene from the pathogenic piscine hemoflagellate, Cryptobia salmositica,” Parasitology Research, vol. 100, pp. 881–886, 2007.
  47. C.-W. Tan, P. R. R. Jesudhasan, and P. T. K. Woo, “Towards a metalloprotease-DNA vaccine against piscine cryptobiosis caused by Cryptobia salmositica,” Parasitology Research, vol. 102, no. 2, pp. 265–275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Kurath, “Biotechnology and DNA vaccines for aquatic organisms,” Revue Scientifique et Technique de l'Office International des Epizooties, vol. 27, pp. 175–196, 2008.
  49. P. J. Rosenthal, “Proteases of protozoan parasites,” Advances in Parasitology, vol. 43, pp. 105–159, 1999. View at Scopus
  50. S. C. Roberts, K. G. Swihart, M. W. Agey, R. Ramamoorthy, M. E. Wilson, and J. E. Donelson, “Sequence diversity and organization of the msp gene family encoding gp63 of Leishmania chagasi,” Molecular and Biochemical Parasitology, vol. 62, no. 2, pp. 157–172, 1993. View at Publisher · View at Google Scholar · View at Scopus
  51. N. M. El-Sayed, P. J. Myler, D. C. Bartholomeu, et al., “The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease,” Science, vol. 309, no. 5733, pp. 409–415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. D. J. LaCount, A. E. Gruszynski, P. M. Grandgenett, J. D. Bangs, and J. E. Donelson, “Expression and function of the Trypanosoma brucei major surface protease (GP63) genes,” Journal of Biological Chemistry, vol. 278, no. 27, pp. 24658–24664, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. L. D. B. Kinabo, J. A. Bogan, Q. A. McKellar, and M. Murray, “Relay bioavailability and toxicity of isometamidium residues: a model for human risk assessment,” Veterinary and Human Toxicology, vol. 31, no. 5, pp. 417–421, 1989. View at Scopus
  54. L. D. Kinabo and J. A. Bogan, “Binding of isometamidium to calf thymus DNA and lipids: pharmacological implications,” Journal of Veterinary Pharmacology and Therapeutics, vol. 10, no. 4, pp. 357–362, 1987. View at Scopus
  55. B. F. Ardelli and P. T. K. Woo, “An antigen-capture enzyme-linked immunosorbent assay (ELISA) to detect isometamidium chloride in Oncorhynchus spp,” Diseases of Aquatic Organisms, vol. 39, no. 3, pp. 231–236, 2000. View at Scopus
  56. B. F. Ardelli and P. T. K. Woo, “The therapeutic use of isometamidium chloride against Cryptobia salmositica in rainbow trout Oncorhynchus mykiss,” Diseases of Aquatic Organisms, vol. 37, no. 3, pp. 195–203, 1999. View at Scopus
  57. B. F. Ardelli and P. T. K. Woo, “Therapeutic and prophylactic effects of isometamidium chloride (Samorin) against the hemoflagellate Cryptobia salmositica in chinook salmon (Oncorhynchus tshawytscha) and the effects of the drug on uninfected rainbow trout (O. mykiss),” Parasitology Research, vol. 87, no. 1, pp. 18–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. B. F. Ardelli, J. D. S. Witt, and P. T. K. Woo, “The identification of glycosomes and metabolic end products in pathogenic and nonpathogenic strains of Cryptobia salmositica (Kinetoplastida: Bodonidae),” Diseases of Aquatic Organisms, vol. 42, no. 1, pp. 41–51, 2000. View at Scopus
  59. B. F. Ardelli and P. T. K. Woo, “Conjugation of isometamidium chloride to antibodies and the use of the conjugate against the haemoflagellate, Cryptobia salmositica Katz, 1951: an immuno-chemotherapeutic strategy,” Journal of Fish Diseases, vol. 24, no. 8, pp. 439–451, 2001. View at Publisher · View at Google Scholar · View at Scopus