About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 357106, 19 pages
http://dx.doi.org/10.1155/2010/357106
Review Article

Modulation of Dendritic Cell Responses by Parasites: A Common Strategy to Survive

1Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), 54090 Tlalnepantla, Estado de México, Mexico
2Department of Immunology, Instituto Nacional de Cardiología “Ignacio Chávez”, Secretaria de Salud, Juan Badiano no. 1, Col Sección XVI, 14080 Tlalpan, México D.F., Mexico

Received 21 August 2009; Accepted 18 November 2009

Academic Editor: Abhay R. Satoskar

Copyright © 2010 César A. Terrazas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Lanzavecchia and F. Sallusto, “The instructive role of dendritic cells on T cell responses: lineages, plasticity and kinetics,” Current Opinion in Immunology, vol. 13, no. 3, pp. 291–298, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. J. Banchereau, F. Briere, C. Caux, et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. P. Guermonprez, J. Valladeau, L. Zitvogel, C. Thery, and S. Amigorena, “Antigen presentation and T cell stimulation by dendritic cells,” Annual Review of Immunology, vol. 20, pp. 621–667, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. A. Lanzavecchia and F. Sallusto, “Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells,” Science, vol. 290, no. 5489, pp. 92–97, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. M. N. Wykes, X. Q. Liu, L. Beattie, et al., “Plasmodium strain determines dendritic cell function essential for survival from malaria,” PLoS Pathogens, vol. 3, no. 7, article e96, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. Xin, Y. Li, and L. Soong, “Role of interleukin-1β in activating the CD11chigh CD45RB- dendritic cell subset and priming Leishmania amazonensis- specific CD4+ T cells in vitro and in vivo,” Infection and Immunity, vol. 75, no. 10, pp. 5018–5026, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. M. Pepper, F. Dzierszinski, E. Wilson, et al., “Plasmacytoid dendritic cells are activated by Toxoplasma gondii to present antigen and produce cytokines,” Journal of Immunology, vol. 180, no. 9, pp. 6229–6236, 2008. View at Scopus
  9. S. R. Silva, J. F. Jacysyn, M. S. Macedo, and E. L. Faquin-Mauro, “Immunosuppressive components of Ascaris suum down-regulate expression of costimulatory molecules and function of antigen-presenting cells via an IL-10-mediated mechanism,” European Journal of Immunology, vol. 36, no. 12, pp. 3227–3237, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. R. T. Semnani, H. Sabzevari, R. Iyer, and T. B. Nutman, “Filarial antigens impair the function of human dendritic cells during differentiation,” Infection and Immunity, vol. 69, no. 9, pp. 5813–5822, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. D. van der Kleij, E. Latz, J. F. Brouwers, et al., “A novel host-parasite lipid cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization,” Journal of Biological Chemistry, vol. 277, no. 50, pp. 48122–48129, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. K. Jangpatarapongsa, P. Chootong, J. Sattabongkot, et al., “Plasmodium vivax parasites alter the balance of myeloid and plasmacytoid dendritic cells and the induction of regulatory T cells,” European Journal of Immunology, vol. 38, no. 10, pp. 2697–2705, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A.-M. Sponaas, E. T. Cadman, C. Voisine, et al., “Malaria infection changes the ability of splenic dendritic cell populations to stimulate antigen-specific T cells,” Journal of Experimental Medicine, vol. 203, no. 6, pp. 1427–1433, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. R. Rigano, B. Buttari, E. Profumo, et al., “Echinococcus granulosus antigen B impairs human dendritic cell differentiation and polarizes immature dendritic cell maturation towards a Th2 cell response,” Infection and Immunity, vol. 75, no. 4, pp. 1667–1678, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. P. G. Thomas, M. R. Carter, O. Atochina, et al., “Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism,” Journal of Immunology, vol. 171, no. 11, pp. 5837–5841, 2003. View at Scopus
  16. F. S. Machado, J. E. Johndrow, L. Esper, et al., “Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent,” Nature Medicine, vol. 12, no. 3, pp. 330–334, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. H. Erdmann, C. Steeg, F. Koch-Nolte, B. Fleischer, and T. Jacobs, “Sialylated ligands on pathogenic Trypanosoma cruzi interact with Siglec-E (sialic acid-binding Ig-like lectin-E),” Cellular Microbiology, vol. 11, no. 11, pp. 1600–1611, 2009.
  18. E. van Liempt, S. J. van Vliet, A. Engering, et al., “Schistosoma mansoni soluble egg antigens are internalized by human dendritic cells through multiple C-type lectins and suppress TLR-induced dendritic cell activation,” Molecular Immunology, vol. 44, no. 10, pp. 2605–2615, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. O. R. Millington, C. Di Lorenzo, R. S. Phillips, P. Garside, and J. M. Brewer, “Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through hemozoin-induced failure of dendritic cell function,” Journal of Biology, vol. 5, article 5, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. B. C. Urban, D. J. P. Ferguson, A. Pain, et al., “Plasmodium falciparuminfected erythrocytes modulate the maturation of dendritic cells,” Nature, vol. 400, no. 6739, pp. 73–77, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. J. A. Perry, C. S. Olver, R. C. Burnett, and A. C. Avery, “Cutting edge: the acquisition of TLR tolerance during malaria infection impacts T cell activation,” Journal of Immunology, vol. 174, no. 10, pp. 5921–5925, 2005. View at Scopus
  22. M. N. Wykes, X. Q. Liu, S. Jiang, C. Hirunpetcharat, and M. F. Good, “Systemic tumor necrosis factor generated during lethal Plasmodium infections impairs dendritic cell function,” Journal of Immunology, vol. 179, no. 6, pp. 3982–3987, 2007. View at Scopus
  23. C. Ocana-Morgner, K. A. Wong, and A. Rodriguez, “Interactions between dendritic cells and CD4+ T cells during Plasmodium infection,” Malaria Journal, vol. 7, article 88, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. C. Ocana-Morgner, M. M. Mota, and A. Rodriguez, “Malaria blood stage suppression of liver stage immunity by dendritic cells,” Journal of Experimental Medicine, vol. 197, no. 2, pp. 143–151, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Langhorne, S. J. Quin, and L. A. Sanni, “Mouse models of blood-stage malaria infections: immune responses and cytokines involved in protection and pathology,” Chemical Immunology, vol. 80, pp. 204–228, 2002. View at Scopus
  26. P. Mukherjee and V. S. Chauhan, “Plasmodium falciparum-free merozoites and infected RBCs distinctly affect soluble CD40 ligand-mediated maturation of immature monocyte-derived dendritic cells,” Journal of Leukocyte Biology, vol. 84, no. 1, pp. 244–254, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. J. M. Orengo, K. A. Wong, C. Ocana-Morgner, and A. Rodriguez, “A Plasmodium yoelii soluble factor inhibits the phenotypic maturation of dendritic cells,” Malaria Journal, vol. 7, article 254, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. O. A. Skorokhod, M. Alessio, B. Mordmuller, P. Arese, and E. Schwarzer, “Hemozoin (malarial pigment) inhibits differentiation and maturation of human monocyte-derived dendritic cells: a peroxisome proliferator-activated receptor-γ-mediated effect,” Journal of Immunology, vol. 173, no. 6, pp. 4066–4074, 2004. View at Scopus
  29. O. Skorokhod, E. Schwarzer, T. Grune, and P. Arese, “Role of 4-hydroxynonenal in the hemozoin-mediated inhibition of differentiation of human monocytes to dendritic cells induced by GM-CSF/IL-4,” BioFactors, vol. 24, no. 1–4, pp. 283–289, 2005. View at Scopus
  30. H. Hisaeda, K. Tetsutani, T. Imai, et al., “Malaria parasites require TLR9 signaling for immune evasion by activating regulatory T cells,” Journal of Immunology, vol. 180, no. 4, pp. 2496–2503, 2008. View at Scopus
  31. K. A. Wong and A. Rodriguez, “Plasmodium infection and endotoxic shock induce the expansion of regulatory dendritic cells,” Journal of Immunology, vol. 180, no. 2, pp. 716–726, 2008. View at Scopus
  32. P. C. Bull and K. Marsh, “The role of antibodies to Plasmodium falciparum-infected-erythrocyte surface antigens in naturally acquired immunity to malaria,” Trends in Microbiology, vol. 10, no. 2, pp. 55–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. D. I. Baruch, J. A. Gormley, C. Ma, R. J. Howard, and B. L. Pasloske, “Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized erythrocyte receptor for adherence to CD36, thrombospondin, and intercellular adhesion molecule 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 8, pp. 3497–3502, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Fried and P. E. Duffy, “Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta,” Science, vol. 272, no. 5267, pp. 1502–1504, 1996. View at Scopus
  35. S. R. Elliott, T. P. Spurck, J. M. Dodin, et al., “Inhibition of dendritic cell maturation by malaria is dose dependent and does not require Plasmodium falciparum erythrocyte membrane protein 1,” Infection and Immunity, vol. 75, no. 7, pp. 3621–3632, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. C. Coban, K. J. Ishii, T. Kawai, et al., “Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin,” Journal of Experimental Medicine, vol. 201, no. 1, pp. 19–25, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. S. Pichyangkul, K. Yongvanitchit, U. Kum-arb, et al., “Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway,” Journal of Immunology, vol. 172, no. 8, pp. 4926–4933, 2004. View at Scopus
  38. J. Zhu, G. Krishnegowda, and D. C. Gowda, “Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: the requirement of extracellular signal-regulated kinase, p38, c-Jun N-terminal kinase and NF-κB pathways for the expression of proinflammatory cytokines and nitric oxide,” Journal of Biological Chemistry, vol. 280, no. 9, pp. 8617–8627, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. P. Parroche, F. N. Lauw, N. Goutagny, et al., “Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 6, pp. 1919–1924, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. L. Reiner and R. M. Locksley, “The regulation of immunity to Leishmania major,” Annual Review of Immunology, vol. 13, pp. 151–177, 1995. View at Scopus
  41. F. Mattner, J. Magram, J. Ferrante, et al., “Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response,” European Journal of Immunology, vol. 26, no. 7, pp. 1553–1559, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. H. Chakir, A. Campos-Neto, M. Mojibian, and J. R. Webb, “IL-12Rβ2-deficient mice of a genetically resistant background are susceptible to Leishmania major infection and develop a parasite-specific Th2 immune response,” Microbes and Infection, vol. 5, no. 4, pp. 241–249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Suzue, S. Kobayashi, T. Takeuchi, M. Suzuki, and S. Koyasu, “Critical role of dendritic cells in determining the Th 1/Th2 balance upon Leishmania major infection,” International Immunology, vol. 20, no. 3, pp. 337–343, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. E. von Stebut, Y. Belkaid, B. V. Nguyen, M. Cushing, D. L. Sacks, and M. C. Udey, “Leishmania major-infected murine Langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous Leishmaniasis,” European Journal of Immunology, vol. 30, no. 12, pp. 3498–3506, 2000. View at Scopus
  45. H. Qi, V. Popov, and L. Soong, “Leishmania amazonensis-dendritic cell interactions in vitro and the priming of parasite-specific CD4+ T cells in vivo,” Journal of Immunology, vol. 167, no. 8, pp. 4534–4542, 2001. View at Scopus
  46. P. Konecny, A. J. Stagg, H. Jebbari, N. English, R. N. Davidson, and S. C. Knight, “Murine dendritic cells internalize Leishmania major promastigotes, produce IL-12 p40 and stimulate primary T cell proliferation in vitro,” European Journal of Immunology, vol. 29, no. 6, pp. 1803–1811, 1999. View at Scopus
  47. E. von Stebut, Y. Belkaid, T. Jakob, D. L. Sacks, and M. C. Udey, “Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity,” Journal of Experimental Medicine, vol. 188, no. 8, pp. 1547–1552, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Favali, N. Tavares, J. Clarencio, A. Barral, M. Barral-Netto, and C. Brodskyn, “Leishmania amazonensis infection impairs differentiation and function of human dendritic cells,” Journal of Leukocyte Biology, vol. 82, no. 6, pp. 1401–1406, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. P. M. Boggiatto, F. Jie, M. Ghosh, et al., “Altered dendritic cell phenotype in response to Leishmania amazonensis amastigote infection is mediated by MAP kinase, ERK,” American Journal of Pathology, vol. 174, no. 5, pp. 1818–1826, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. C. L. Bennett, A. Misslitz, L. Colledge, T. Aebischer, and C. C. Blackburn, “Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes,” European Journal of Immunology, vol. 31, no. 3, pp. 876–883, 2001. View at Scopus
  51. J. Argueta-Donohue, N. Carrillo, L. Valdes-Reyes, et al., “Leishmania mexicana: participation of NF-κB in the differential production of IL-12 in dendritic cells and monocytes induced by lipophosphoglycan (LPG),” Experimental Parasitology, vol. 120, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. K. Tejle, M. Lindroth, K.-E. Magnusson, and B. Rasmusson, “Wild-type Leishmania donovani promastigotes block maturation, increase integrin expression and inhibit detachment of human monocyte-derived dendritic cells—the influence of phosphoglycans,” FEMS Microbiology Letters, vol. 279, no. 1, pp. 92–102, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. Ato, S. Stager, C. R. Engwerda, and P. M. Kaye, “Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis,” Nature Immunology, vol. 3, no. 12, pp. 1185–1191, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. H. Jebbari, A. J. Stagg, R. N. Davidson, and S. C. Knight, “Leishmania major promastigotes inhibit dendritic cell motility in vitro,” Infection and Immunity, vol. 70, no. 2, pp. 1023–1026, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Ponte-Sucre, D. Heise, and H. Moll, “Leishmania major lipophosphoglycan modulates the phenotype and inhibits migration of murine Langerhans cells,” Immunology, vol. 104, no. 4, pp. 462–467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Liu, C. Kebaier, N. Pakpour, et al., “Leishmania major phosphoglycans influence the host early immune response by modulating dendritic cell functions,” Infection and Immunity, vol. 77, no. 8, pp. 3272–3283, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. M. Revest, L. Donaghy, F. Cabillic, C. Guiguen, and J.-P. Gangneux, “Comparison of the immunomodulatory effects of L. donovani and L. major excreted-secreted antigens, particulate and soluble extracts and viable parasites on human dendritic cells,” Vaccine, vol. 26, no. 48, pp. 6119–6123, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. C. Wiethe, A. Debus, M. Mohrs, A. Steinkasserer, M. Lutz, and A. Gessner, “Dendritic cell differentiation state and their interaction with NKT cells determine Th1/Th2 differentiation in the murine model of Leishmania major infection,” Journal of Immunology, vol. 180, no. 7, pp. 4371–4381, 2008. View at Scopus
  59. J. Liese, U. Schleicher, and C. Bogdan, “TLR9 signaling is essential for the innate NK cell response in murine cutaneous leishmaniasis,” European Journal of Immunology, vol. 37, no. 12, pp. 3424–3434, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. U. Schleicher, J. Liese, I. Knippertz, et al., “NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs,” Journal of Experimental Medicine, vol. 204, no. 4, pp. 893–906, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. C. De Trez, M. Brait, O. Leo, et al., “Myd88-dependent in vivo maturation of splenic dendritic cells induced by Leishmania donovani and other Leishmania species,” Infection and Immunity, vol. 72, no. 2, pp. 824–832, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Becker, N. Salaiza, M. Aguirre, et al., “Leishmania lipophosphoglycan (LPG) activates NK cells through Toll-like receptor-2,” Molecular and Biochemical Parasitology, vol. 130, no. 2, pp. 65–74, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. J.-F. Flandin, F. Chano, and A. Descoteaux, “RNA interference reveals a role for TLR2 and TLR3 in the recognition of Leishmania donovani promastigotes by interferon-γ-primed macrophages,” European Journal of Immunology, vol. 36, no. 2, pp. 411–420, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. J. de Veer, J. M. Curtis, T. M. Baldwin, et al., “MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling,” European Journal of Immunology, vol. 33, no. 10, pp. 2822–2831, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. L. P. Carvalho, E. J. Pearce, and P. Scott, “Functional dichotomy of dendritic cells following interaction with Leishmania braziliensis: infected cells produce high levels of TNF-α, whereas bystander dendritic cells are activated to promote T cell responses,” Journal of Immunology, vol. 181, no. 9, pp. 6473–6480, 2008. View at Scopus
  66. L. Van Overtvelt, N. Vanderheyde, V. Verhasselt, et al., “Trypanosoma cruzi infects human dendritic cells and prevents their maturation: inhibition of cytokines, HLA-DR, and costimulatory molecules,” Infection and Immunity, vol. 67, no. 8, pp. 4033–4040, 1999. View at Scopus
  67. C. Brodskyn, J. Patricio, R. Oliveira, et al., “Glycoinositolphospholipids from Trypanosoma cruzi interfere with macrophages and dendritic cell responses,” Infection and Immunity, vol. 70, no. 7, pp. 3736–3743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. C. V. Poncini, C. D. Alba Soto, E. Batalla, M. E. Solana, and S. M. Gonzalez Cappa, “Trypanosoma cruzi induces regulatory dendritic cells in vitro,” Infection and Immunity, vol. 76, no. 6, pp. 2633–2641, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. D. Chaussabel, B. Pajak, V. Vercruysse, et al., “Alteration of migration and maturation of dendritic cells and T-cell depletion in the course of experimental Trypanosoma cruzi infection,” Laboratory Investigation, vol. 83, no. 9, pp. 1373–1382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. C. D. Alba Soto, G. A. Mirkin, M. E. Solana, and S. M. Gonzalez Cappa, “Trypanosoma cruzi infection modulates in vivo expression of major histocompatibility complex class II molecules on antigen-presenting cells and T-cell stimulatory activity of dendritic cells in a strain-dependent manner,” Infection and Immunity, vol. 71, no. 3, pp. 1194–1199, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Planelles, M. C. Thomas, C. Maranon, M. Morell, and M. C. Lopez, “Differential CD86 and CD40 co-stimulatory molecules and cytokine expression pattern induced by Trypanosoma cruzi in APCs from resistant or susceptible mice,” Clinical and Experimental Immunology, vol. 131, no. 1, pp. 41–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. R. Koga, S. Hamano, H. Kuwata, et al., “TLR-dependent induction of IFN-β mediates host defense against Trypanosoma cruzi,” Journal of Immunology, vol. 177, no. 10, pp. 7059–7066, 2006. View at Scopus
  73. M. A. S. Campos, I. C. Almeida, O. Takeuchi, et al., “Activation of Toll-like receptor-2 by glycosylphosphatidylinositol anchors from a protozoan parasite,” Journal of Immunology, vol. 167, no. 1, pp. 416–423, 2001. View at Scopus
  74. A. Bafica, H. C. Santiago, R. Goldszmid, C. Ropert, R. T. Gazzinelli, and A. Sher, “Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi infection,” Journal of Immunology, vol. 177, no. 6, pp. 3515–3519, 2006. View at Scopus
  75. A. Ouaissi, E. Guilvard, Y. Delneste, et al., “The Trypanosoma cruzi Tc52-released protein induces human dendritic cell maturation, signals via Toll-like receptor 2, and confers protection against lethal infection,” Journal of Immunology, vol. 168, no. 12, pp. 6366–6374, 2002. View at Scopus
  76. A. C. Monteiro, V. Schmitz, A. Morrot, et al., “Bradykinin B2 Receptors of dendritic cells, acting as sensors of kinins proteolytically released by Trypanosoma cruzi, are critical for the development of protective type-1 responses,” PLoS Pathogens, vol. 3, no. 11, article e185, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. C. Reis e Sousa, S. Hieny, T. Scharton-Kersten, et al., “In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas,” Journal of Experimental Medicine, vol. 186, no. 11, pp. 1819–1829, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. O. Schulz, A. D. Edwards, M. Schito, et al., “CD40 triggering of heterodimeric IL-12 p70 production by dendritic cells in vivo requires a microbial priming signal,” Immunity, vol. 13, no. 4, pp. 453–462, 2000. View at Scopus
  79. J. Aliberti, D. Jankovic, and A. Sher, “Turning it on and off: regulation of dendritic cell function in Toxoplasma gondii infection,” Immunological Reviews, vol. 201, pp. 26–34, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. F. Yarovinsky, D. Zhang, J. F. Andersen, et al., “Immunology: TLR11 activation of dendritic cells by a protozoan profilin-like protein,” Science, vol. 308, no. 5728, pp. 1626–1629, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. C. M. Miller, N. R. Boulter, R. J. Ikin, and N. C. Smith, “The immunobiology of the innate response to Toxoplasma gondii,” International Journal for Parasitology, vol. 39, no. 1, pp. 23–39, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. F. Yarovinsky, “Toll-like receptors and their role in host resistance to Toxoplasma gondii,” Immunology Letters, vol. 119, no. 1-2, pp. 17–21, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. J. Aliberti, J. G. Valenzuela, V. B. Carruthers, et al., “Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells,” Nature Immunology, vol. 4, no. 5, pp. 485–490, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. C. Reis e Sousa, G. Yap, O. Schulz, et al., “Paralysis of dendritic cell IL-12 production by microbial products prevents infection-induced immunopathology,” Immunity, vol. 11, no. 5, pp. 637–647, 1999. View at Scopus
  85. J. Aliberti and A. Sher, “Role of G-protein-coupled signaling in the induction and regulation of dendritic cell function by Toxoplasma gondii,” Microbes and Infection, vol. 4, no. 9, pp. 991–997, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Suchitra, K. A. Anbu, D. K. Rathore, M. Mahawar, B. P. Singh, and P. Joshi, “Haemonchus contortus calreticulin binds to C-reactive protein of its host, a novel survival strategy of the parasite,” Parasite Immunology, vol. 30, no. 6-7, pp. 371–374, 2008. View at Scopus
  87. A. S. McKee, F. Dzierszinski, M. Boes, D. S. Roos, and E. J. Pearce, “Functional inactivation of immature dendritic cells by the intracellular parasite Toxoplasma gondii,” Journal of Immunology, vol. 173, no. 4, pp. 2632–2640, 2004. View at Scopus
  88. A. L. Bierly, W. J. Shufesky, W. Sukhumavasi, A. E. Morelli, and E. Y. Denkers, “Dendritic cells expressing plasmacytoid marker PDCA-1 are Trojan horses during Toxoplasma gondii infection,” Journal of Immunology, vol. 181, no. 12, pp. 8485–8491, 2008. View at Scopus
  89. J. Diana, F. Persat, M.-J. Staquet, et al., “Migration and maturation of human dendritic cells infected with Toxoplasma gondii depend on parasite strain type,” FEMS Immunology and Medical Microbiology, vol. 42, no. 3, pp. 321–331, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. N. Courret, S. Darche, P. Sonigo, G. Milon, D. Buzoni-Gatel, and I. Tardieux, “CD11c- and CD11b-expressing mouse leukocytes transport single Toxoplasma gondii tachyzoites to the brain,” Blood, vol. 107, no. 1, pp. 309–316, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. C. M. Persson, H. Lambert, P. P. Vutova, et al., “Transmission of Toxoplasma gondii from infected dendritic cells to natural killer cells,” Infection and Immunity, vol. 77, no. 3, pp. 970–976, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. H. Lambert, N. Hitziger, I. Dellacasa, M. Svensson, and A. Barragan, “Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination,” Cellular Microbiology, vol. 8, no. 10, pp. 1611–1623, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. J. Diana, C. Vincent, F. Peyron, S. Picot, D. Schmitt, and F. Persat, “Toxoplasma gondii regulates recruitment and migration of human dendritic cells via different soluble secreted factors,” Clinical and Experimental Immunology, vol. 141, no. 3, pp. 475–484, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. J. D. Kamda and S. M. Singer, “Phosphoinositide 3-kinase-dependent inhibition of dendritic cell interleukin-12 production by Giardia lamblia,” Infection and Immunity, vol. 77, no. 2, pp. 685–693, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. C. Maldonado-Bernal, C. J. Kirschning, Y. Rosenstein, et al., “The innate immune response to Entamoeba histolytica lipopeptidophosphoglycan is mediated by Toll-like receptors 2 and 4,” Parasite Immunology, vol. 27, no. 4, pp. 127–137, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. C. P. A. Ivory, M. Prystajecky, C. Jobin, and K. Chadee, “Toll-like receptor 9-dependent macrophage activation by Entamoeba histolytica DNA,” Infection and Immunity, vol. 76, no. 1, pp. 289–297, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. H. Vivanco-Cid, C. Alpuche-Aranda, I. Wong-Baeza, et al., “Lipopopeptidephosphoglycan from Entamoeba histolytica activates human macrophages and dendritic cells and reaches their late endosomes,” Parasite Immunology, vol. 29, no. 9, pp. 467–474, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. C. P. A. Ivory and K. Chadee, “Activation of dendritic cells by the Gal-lectin of Entamoeba histolytica drives Th1 responses in vitro and in vivo,” European Journal of Immunology, vol. 37, no. 2, pp. 385–394, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. K. A. Rogers, A. B. Rogers, B. A. Leav, et al., “MyD88-dependent pathways mediate resistance to Cryptosporidium parvum infection in mice,” Infection and Immunity, vol. 74, no. 1, pp. 549–556, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. X.-M. Chen, S. P. O'Hara, J. B. Nelson, et al., “Multiple TLRs are expressed in human cholangiocytes and mediate host epithelial defense responses to Cryptosporidium parvum via activation of NF-κB,” Journal of Immunology, vol. 175, no. 11, pp. 7447–7456, 2005. View at Scopus
  101. J.-H. Chang, J.-Y. Park, and S.-K. Kim, “Dependence on p38 MAPK signalling in the up-regulation of TLR2, TLR4 and TLR9 gene expression in Trichomonas vaginalis-treated HeLa cells,” Immunology, vol. 118, no. 2, pp. 164–170, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. M. R. Zariffard, S. Harwani, R. M. Novak, P. J. Graham, X. Ji, and G. T. Spear, “Trichomonas vaginalis infection activates cells through Toll-like receptor 4,” Clinical Immunology, vol. 111, no. 1, pp. 103–107, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. R. T. Semnani, P. G. Venugopal, C. A. Leifer, S. Mostbock, H. Sabzevari, and T. B. Nutman, “Inhibition of TLR3 and TLR4 function and expression in human dendritic cells by helminth parasites,” Blood, vol. 112, no. 4, pp. 1290–1298, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. A. Yoshimura, T. Naka, and M. Kubo, “SOCS proteins, cytokine signalling and immune regulation,” Nature Reviews Immunology, vol. 7, no. 6, pp. 454–465, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. A. Balic, Y. Harcus, M. J. Holland, and R. M. Maizels, “Selective maturation of dendritic cells by Nippostrongylus brasiliensis-secreted proteins drives Th2 immune responses,” European Journal of Immunology, vol. 34, no. 11, pp. 3047–3059, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. B. W. McConchie, H. H. Norris, V. G. Bundoc, et al., “Ascaris suum-derived products suppress mucosal allergic inflammation in an interleukin-10-independent manner via interference with dendritic cell function,” Infection and Immunity, vol. 74, no. 12, pp. 6632–6641, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. D. E. Kean, I. Ohtsuka, K. Sato, et al., “Dissecting Ascaris glycosphingolipids for immunomodulatory moieties—the use of synthetic structural glycosphingolipid analogues,” Parasite Immunology, vol. 28, no. 3, pp. 69–76, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. H. S. Goodridge, F. A. Marshall, K. J. Else, et al., “Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62,” Journal of Immunology, vol. 174, no. 1, pp. 284–293, 2005. View at Scopus
  109. W. Harnett, M. R. Deehan, K. M. Houston, and M. M. Harnett, “Immunomodulatory properties of a phosphorylcholine-containing secreted filarial glycoprotein,” Parasite Immunology, vol. 21, no. 12, pp. 601–608, 1999. View at Publisher · View at Google Scholar · View at Scopus
  110. M. Whelan, M. M. Harnett, K. M. Houston, V. Patel, W. Harnett, and K. P. Rigley, “A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells,” Journal of Immunology, vol. 164, no. 12, pp. 6453–6460, 2000. View at Scopus
  111. K. N. Couper, W. Chen, K. M. Houston, W. Harnett, and L. L. Johnson, “ES-62 is unable to modulate Toxoplasma gondii-driven Th1 responses and pathology,” Parasite Immunology, vol. 27, no. 4, pp. 147–150, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. L. Al-Riyami, C. A. Egan, J. E. Bradley, S. Lustigman, and W. Harnett, “Failure of ES-62 to inhibit T-helper type 1 responses to other filarial nematode antigens,” Parasite Immunology, vol. 30, no. 5, pp. 304–308, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. M. Segura, Z. Su, C. Piccirillo, and M. M. Stevenson, “Impairment of dendritic cell function by excretory-secretory products: a potential mechanism for nematode-induced immunosuppression,” European Journal of Immunology, vol. 37, no. 7, pp. 1887–1904, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. C.-C. Chen, S. Louie, B. A. McCormick, W. A. Walker, and H. N. Shi, “Helminth-primed dendritic cells alter the host response to enteric bacterial infection,” Journal of Immunology, vol. 176, no. 1, pp. 472–483, 2006. View at Scopus
  115. E. van Riet, B. Everts, K. Retra, et al., “Combined TLR2 and TLR4 ligation in the context of bacterial or helminth extracts in human monocyte derived dendritic cells: molecular correlates for Th1/Th2 polarization,” BMC Immunology, vol. 10, article 9, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. J. Rzepecka, S. Rausch, C. Klotz, et al., “Calreticulin from the intestinal nematode Heligmosomoides polygyrus is a Th2-skewing protein and interacts with murine scavenger receptor-A,” Molecular Immunology, vol. 46, no. 6, pp. 1109–1119, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. C. Cabezon, G. Cabrera, R. Paredes, A. Ferreira, and N. Galanti, “Echinococcus granulosus calreticulin: molecular characterization and hydatid cyst localization,” Molecular Immunology, vol. 45, no. 5, pp. 1431–1438, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. F. Guillou, E. Roger, Y. Mone, et al., “Excretory-secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata,” Molecular and Biochemical Parasitology, vol. 155, no. 1, pp. 45–56, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. F. Mendlovic, J. Carrillo-Farga, J. Torres, J. P. Laclette, and A. Flisser, “Differential expression of calreticulin in developmental stages of Taenia solium,” Journal of Parasitology, vol. 92, no. 4, pp. 789–795, 2006. View at Publisher · View at Google Scholar
  120. J. A. Winter, O. R. Davies, A. P. Brown, M. C. Garnett, S. Stolnik, and D. Pritchard, “The assessment of hookworm calreticulin as a potential vaccine for necatoriasis,” Parasite Immunology, vol. 27, no. 4, pp. 139–146, 2005. View at Publisher · View at Google Scholar · View at PubMed
  121. D. I. Pritchard, A. Brown, G. Kasper, et al., “A hookworm allergen which strongly resembles calreticulin,” Parasite Immunology, vol. 21, no. 9, pp. 439–450, 1999. View at Publisher · View at Google Scholar
  122. A. T. Vella, M. D. Hulsebosch, and E. J. Pearce, “Schistosoma mansoni eggs induce antigen-responsive CD44-hi T helper 2 cells and IL-4-secreting CD44-lo cells: potential for T helper 2 subset differentiation is evident at the precursor level,” Journal of Immunology, vol. 149, no. 5, pp. 1714–1722, 1992.
  123. G. A. Cook, A. Metwali, A. Blum, R. Mathew, and J. V. Weinstock, “Lymphokine expression in granulomas of Schistosoma mansoni-infected mice,” Cellular Immunology, vol. 152, no. 1, pp. 49–58, 1993. View at Publisher · View at Google Scholar · View at PubMed
  124. C. Faveeuw, T. Mallevaey, K. Paschinger, et al., “Schistosome N-glycans containing core α3-fucose and core β2-xylose epitopes are strong inducers of Th2 responses in mice,” European Journal of Immunology, vol. 33, no. 5, pp. 1271–1281, 2003. View at Publisher · View at Google Scholar · View at PubMed
  125. C. M. Kane, L. Cervi, J. Sun, et al., “Helminth antigens modulate TLR-initiated dendritic cell activation,” Journal of Immunology, vol. 173, no. 12, pp. 7454–7461, 2004.
  126. C. M. Kane, E. Jung, and E. J. Pearce, “Schistosoma mansoni egg antigen-mediated modulation of Toll-like receptor (TLR)-induced activation occurs independently of TLR2, TLR4, and MyD88,” Infection and Immunity, vol. 76, no. 12, pp. 5754–5759, 2008. View at Publisher · View at Google Scholar · View at PubMed
  127. J. P. Hewitson, J. R. Grainger, and R. M. Maizels, “Helminth immunoregulation: the role of parasite secreted proteins in modulating host immunity,” Molecular and Biochemical Parasitology, vol. 167, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at PubMed
  128. P. G. Thomas, M. R. Carter, A. A. Da'Dara, T. M. DeSimone, and D. A. Harn, “A helminth glycan induces APC maturation via alternative NF-κB activation independent of IκBα degradation,” Journal of Immunology, vol. 175, no. 4, pp. 2082–2090, 2005.
  129. S. P. Saunders, C. M. Walsh, J. L. Barlow, et al., “The C-type lectin SIGNR1 binds Schistosoma mansoni antigens in vitro, but SIGNR1-deficient mice have normal responses during schistosome infection,” Infection and Immunity, vol. 77, no. 1, pp. 399–404, 2009. View at Publisher · View at Google Scholar · View at PubMed
  130. C. M. Krawczyk, J. Sun, and E. J. Pearce, “Th2 differentiation is unaffected by jagged2 expression on dendritic cells,” Journal of Immunology, vol. 180, no. 12, pp. 7931–7937, 2008.
  131. T. B. H. Geijtenbeek and S. I. Gringhuis, “Signalling through C-type lectin receptors: shaping immune responses,” Nature Reviews Immunology, vol. 9, no. 7, pp. 465–479, 2009. View at Publisher · View at Google Scholar · View at PubMed
  132. L. Gomez-Garcia, I. Rivera-Montoya, M. Rodriguez-Sosa, and L. I. Terrazas, “Carbohydrate components of Taenia crassiceps metacestodes display Th2-adjuvant and anti-inflammatory properties when co-injected with bystander antigen,” Parasitology Research, vol. 99, no. 4, pp. 440–448, 2006. View at Publisher · View at Google Scholar · View at PubMed
  133. L. Gomez-Garcia, L. M. Lopez-Marin, R. Saavedra, J. L. Reyes, M. Rodriguez-Sosa, and L. I. Terrazas, “Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells,” Parasite Immunology, vol. 27, no. 10-11, pp. 395–405, 2005. View at Publisher · View at Google Scholar · View at PubMed
  134. J. L. Reyes, C. A. Terrazas, L. Vera-Arias, and L. I. Terrazas, “Differential response of antigen presenting cells from susceptible and resistant strains of mice to Taenia crassiceps infection,” Infection, Genetics and Evolution, vol. 9, no. 6, pp. 1115–1127, 2009. View at Publisher · View at Google Scholar · View at PubMed
  135. E. Muraille, C. De Trez, M. Brait, P. De Baetselier, O. Leo, and Y. Carlier, “Genetically resistant mice lacking MyD88-adapter protein display a high susceptibility to Leishmania major infection associated with a polarized Th2 response,” Journal of Immunology, vol. 170, no. 8, pp. 4237–4241, 2003.
  136. J. Aliberti, “Host persistence: exploitation of anti-inflammatory pathways by Toxoplasma gondii,” Nature Reviews Immunology, vol. 5, no. 2, pp. 162–170, 2005. View at Publisher · View at Google Scholar · View at PubMed
  137. F. S. Machado, L. Esper, A. Dias, et al., “Native and aspirin-triggered lipoxins control innate immunity by inducing proteasomal degradation of TRAF6,” Journal of Experimental Medicine, vol. 205, no. 5, pp. 1077–1086, 2008. View at Publisher · View at Google Scholar · View at PubMed
  138. A. Langenkamp, M. Messi, A. Lanzavecchia, and F. Sallusto, “Kinetics of dendritic cell activation: impact on priming of TH1,TH2 and nonpolarized T cells,” Nature Immunology, vol. 1, no. 4, pp. 311–316, 2000.
  139. P. Kalinski, J. H. N. Schuitemaker, C. M. U. Hilkens, E. A. Wierenga, and M. L. Kapsenberg, “Final maturation of dendritic cells is associated with impaired responsiveness to IFN-γ and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells,” Journal of Immunology, vol. 162, no. 6, pp. 3231–3236, 1999.
  140. A. S. MacDonald and R. M. Maizels, “Alarming dendritic cells for Th2 induction,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 13–17, 2008. View at Publisher · View at Google Scholar · View at PubMed
  141. L. Carvalho, J. Sun, C. Kane, F. Marshall, C. Krawczyk, and E. J. Pearce, “Review series on helminths, immune modulation and the hygiene hypothesis: mechanisms underlying helminth modulation of dendritic cell function,” Immunology, vol. 126, no. 1, pp. 28–34, 2009. View at Publisher · View at Google Scholar · View at PubMed
  142. S. J. Jenkins, G. Perona-Wright, A. G. F. Worsley, N. Ishii, and A. S. MacDonald, “Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo,” Journal of Immunology, vol. 179, no. 6, pp. 3515–3523, 2007.
  143. F. A. Marshall and E. J. Pearce, “Uncoupling of induced protein processing from maturation in dendritic cells exposed to a highly antigenic preparation from a helminth parasite,” Journal of Immunology, vol. 181, no. 11, pp. 7562–7570, 2008.
  144. E. Caparros, P. Munoz, E. Sierra-Filardi, et al., “DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production,” Blood, vol. 107, no. 10, pp. 3950–3958, 2006. View at Publisher · View at Google Scholar · View at PubMed
  145. S. I. Gringhuis, J. den Dunnen, M. Litjens, B. van het Hof, Y. van Kooyk, and T. H. Geijtenbeek, “C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB,” Immunity, vol. 26, no. 5, pp. 605–616, 2007. View at Publisher · View at Google Scholar · View at PubMed
  146. T. B. H. Geijtenbeek, S. J. Van Vliet, E. A. Koppel, et al., “Mycobacteria target DC-SIGN to suppress dendritic cell function,” Journal of Experimental Medicine, vol. 197, no. 1, pp. 7–17, 2003. View at Publisher · View at Google Scholar
  147. M. Ando, W. Tu, K.-I. Nishijima, and S. Iijima, “Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs,” Biochemical and Biophysical Research Communications, vol. 369, no. 3, pp. 878–883, 2008. View at Publisher · View at Google Scholar · View at PubMed
  148. A. F. Carlin, S. Uchiyama, Y.-C. Chang, A. L. Lewis, V. Nizet, and A. Varki, “Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response,” Blood, vol. 113, no. 14, pp. 3333–3336, 2009. View at Publisher · View at Google Scholar · View at PubMed
  149. K. M. Ardeshna, A. R. Pizzey, S. Devereux, and A. Khwaja, “The PI3 kinase, p38 SAP kinase, and NF-κB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells,” Blood, vol. 96, no. 3, pp. 1039–1046, 2000.
  150. A. Puig-Kroger, M. Relloso, O. Fernandez-Capetillo, et al., “Extracellular signal-regulated protein kinase signaling pathway negatively regulates the phenotypic and functional maturation of monocyte-derived human dendritic cells,” Blood, vol. 98, no. 7, pp. 2175–2182, 2001. View at Publisher · View at Google Scholar
  151. T. Fukao, M. Tanabe, Y. Terauchi, et al., “P13K-mediated negative feedback regulation of IL-12 production in DCs,” Nature Immunology, vol. 3, no. 9, pp. 875–881, 2002. View at Publisher · View at Google Scholar · View at PubMed
  152. C.-H. Chen, H. Floyd, N. E. Olson, et al., “Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production,” Blood, vol. 107, no. 4, pp. 1459–1467, 2006. View at Publisher · View at Google Scholar · View at PubMed
  153. S. Suchitra, K. A. Anbu, D. K. Rathore, M. Mahawar, B. P. Singh, and P. Joshi, “Haemonchus contortus calreticulin binds to C-reactive protein of its host, a novel survival strategy of the parasite,” Parasite Immunology, vol. 30, no. 6-7, pp. 371–374, 2008. View at Publisher · View at Google Scholar · View at PubMed
  154. T. B. H. Geijtenbeek and S. I. Gringhuis, “Signalling through C-type lectin receptors: shaping immune responses,” Nature Reviews Immunology, vol. 9, no. 7, pp. 465–479, 2009. View at Publisher · View at Google Scholar · View at PubMed