About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 389153, 24 pages
http://dx.doi.org/10.1155/2010/389153
Review Article

Immunobiology of African Trypanosomes: Need of Alternative Interventions

Institute for Biological Sciences, National Research Council of Canada, 100 Sussex Dr. Ottawa, ON, Canada K1A 0R6

Received 10 August 2009; Revised 29 October 2009; Accepted 23 December 2009

Academic Editor: Jorge Morales-Montor

Copyright © 2010 Toya Nath Baral. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Buguet, S. Bisser, T. Josenando, F. Chapotot, and R. Cespuglio, “Sleep structure: a new diagnostic tool for stage determination in sleeping sickness,” Acta Tropica, vol. 93, no. 1, pp. 107–117, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Cattand, J. Jannin, and P. Lucas, “Sleeping sickness surveillance: an essential step towards elimination,” Tropical Medicine and International Health, vol. 6, no. 5, pp. 348–361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. WHO, Control and Surveillance of African Trypanosomiasis, Report of WHO Expert Comittee, WHO Technical Report Series, no. 881, World Health Organization, Geneva, Switzerland, 1998.
  4. F. A. S. Kuzoe, “Current situation of African trypanosomiasis,” Acta Tropica, vol. 54, no. 3-4, pp. 153–162, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Jordan, “Tsetse flies as vectors of trypanosomes,” Veterinary Parasitology, vol. 2, no. 1, pp. 143–152, 1976. View at Scopus
  6. J. Ford, “The influence of tsetse flies on the distribution of African cattle,” in Proceedings of the 1st Federal Scientific Congress, pp. 357–365, Salisbury, Md, USA, 1960.
  7. J. J. McKelvey, Man against Tsetse: Struggle for Africa, Cornell University Press, London, UK, 1973.
  8. N. Wuyts, N. Chokesajjawatee, and S. Panyim, “A simplified and highly sensitive detection of Trypanosoma evansi by DNA amplification,” The Southeast Asian Journal of Tropical Medicine and Public Health, vol. 25, no. 2, pp. 266–271, 1994. View at Scopus
  9. P. P. Joshi, V. R. Shegokar, R. M. Powar, et al., “Human trypanosomiasis caused by Trypanosoma evansi in India: the first case report,” American Journal of Tropical Medicine and Hygiene, vol. 73, no. 3, pp. 491–495, 2005. View at Scopus
  10. WHO, “A new form of human trypanosomiasis in India. Description of the first human case in the world caused by Trypanosoma evansi,” Weekly Epidemiological Record, vol. 80, no. 7, pp. 62–63, 2005. View at Scopus
  11. C. A. Hoare, “The classification of mammalian trypanosomes,” Ergebnisse der Mikrobiologie, Immunitatsforschung und Experimentellen Therapie, vol. 39, pp. 43–57, 1966.
  12. M. Wéry, “Protozoaires Flagellés (Trypanosomatida): parasite du sang et des tissues. Généralités,” in Protozoologie Médical, pp. 83–89, De Boek, Bruxelles, Belgium, 1995.
  13. K. R. Matthews, “Developments in the differentiation of Trypanosoma brucei,” Parasitology Today, vol. 15, no. 2, pp. 76–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. J. David Barry and R. McCulloch, “Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite,” Advances in Parasitology, vol. 49, pp. 2–70, 2001. View at Scopus
  15. K. Vickerman, “Developmental cycles and biology of pathogenic trypanosomes,” British Medical Bulletin, vol. 41, no. 2, pp. 105–114, 1985. View at Scopus
  16. K. Vickerman, “Polymorphism and mitochondrial activity in sleeping sickness trypanosomes,” Nature, vol. 208, no. 5012, pp. 762–766, 1965. View at Publisher · View at Google Scholar · View at Scopus
  17. K. R. Matthews, J. R. Ellis, and A. Paterou, “Molecular regulation of the life cycle of African trypanosomes,” Trends in Parasitology, vol. 20, no. 1, pp. 40–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Vassella, B. Reuner, B. Yutzy, and M. Boshart, “Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway,” Journal of Cell Science, vol. 110, no. 21, pp. 2661–2671, 1997. View at Scopus
  19. K. M. Tyler, K. R. Matthews, and K. Gull, “The bloodstream differentiation-division of Trypanosoma brucei studied using mitochondrial markers,” Proceedings of the Royal Society B, vol. 264, no. 1387, pp. 1481–1490, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. L. M. L. McLintock, C. M. R. Turner, and K. Vickerman, “Comparison of the effects of immune killing mechanisms on Trypanosoma brucei parasites of slender and stumpy morphology,” Parasite Immunology, vol. 15, no. 8, pp. 475–480, 1993. View at Scopus
  21. M. B. Redpath, H. Windle, D. Nolan, E. Pays, H. P. Voorheis, and M. Carrington, “ESAG11, a new VSG expression site-associated gene from Trypanosoma brucei,” Molecular and Biochemical Parasitology, vol. 111, no. 1, pp. 223–228, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Sbicego, E. Vassella, U. Kurath, B. Blum, and I. Roditi, “The use of transgenic Trypanosoma brucei to identify compounds inducing the differentiation of bloodstream forms to procyclic forms,” Molecular and Biochemical Parasitology, vol. 104, no. 2, pp. 311–322, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Ziegelbauer, B. Stahl, M. Karas, Y.-D. Stierhof, and P. Overath, “Proteolytic release of cell surface proteins during differentiation of Trypanosoma brucei,” Biochemistry, vol. 32, no. 14, pp. 3737–3742, 1993. View at Scopus
  24. K. Ziegelbauer and P. Overath, “Surface antigen change during differentiation of Trypanosoma brucei,” Biochemical Society Transactions, vol. 18, no. 5, pp. 731–733, 1990. View at Scopus
  25. A. E. Gruszynski, A. DeMaster, N. M. Hooper, and J. D. Bangs, “Surface coat remodeling during differentiation of Trypanosoma brucei,” Journal of Biological Chemistry, vol. 278, no. 27, pp. 24665–24672, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. E. Gruszynski, F. J. van Deursen, M. C. Albareda, et al., “Regulation of surface coat exchange by differentiating African trypanosomes,” Molecular and Biochemical Parasitology, vol. 147, no. 2, pp. 211–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. K. R. Matthews, “The developmental cell biology of Trypanosoma brucei,” Journal of Cell Science, vol. 118, no. 2, pp. 283–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Sternberg, C. M. R. Turner, J. M. Wells, L. C. Ranford-Cartwright, R. W. F. Le Page, and A. Tait, “Gene exchange in African trypanosomes: frequency and allelic segregation,” Molecular and Biochemical Parasitology, vol. 34, no. 3, pp. 269–279, 1989. View at Scopus
  29. J. Sternberg, A. Tait, S. Haley, et al., “Gene exchange in African trypanosomes: characterisation of a new hybrid genotype,” Molecular and Biochemical Parasitology, vol. 27, no. 2-3, pp. 191–200, 1988. View at Scopus
  30. J. Sternberg and A. Tait, “Genetic exchange in African trypanosomes,” Trends in Genetics, vol. 6, no. 10, pp. 317–322, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. C. M. R. Turner, N. Aslam, E. Smith, N. Buchanan, and A. Tait, “The effects of genetic exchange on variable antigen expression in Trypanosoma brucei,” Parasitology, vol. 103, no. 3, pp. 379–386, 1991. View at Scopus
  32. C. M. R. Turner, J. Sternberg, N. Buchanan, E. Smith, G. Hide, and A. Tait, “Evidence that the mechanism of gene exchange in Trypanosoma brucei involves meiosis and syngamy,” Parasitology, vol. 101, no. 3, pp. 377–386, 1990. View at Scopus
  33. L. Jenni, S. Marti, and J. Schweizer, “Hybrid formation between African trypanosomes during cyclical transmission,” Nature, vol. 322, no. 6075, pp. 173–175, 1986. View at Scopus
  34. J. Schweizer and L. Jenni, “Hybrid formation in the life cycle of Trypanosoma (T) brucei: detection of hybrid trypanosomes in a midgut-derived isolate,” Acta Tropica, vol. 48, no. 4, pp. 319–321, 1991. View at Publisher · View at Google Scholar · View at Scopus
  35. L. E. H. Bingle, J. L. Eastlake, M. Bailey, and W. C. Gibson, “A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the in situ detection of mating events,” Microbiology, vol. 147, no. 12, pp. 3231–3240, 2001. View at Scopus
  36. J. Van Den Abbeele, Y. Claes, D. Van Bockstaele, D. Le Ray, and M. Coosemans, “Trypanosoma brucei spp. development in the tsetse fly: characterization of the post-mesocyclic stages in the foregut and proboscis,” Parasitology, vol. 118, no. 5, pp. 469–478, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. W. Gibson, “Sex and evolution in trypanosomes,” International Journal for Parasitology, vol. 31, no. 5-6, pp. 643–647, 2001. View at Scopus
  38. W. Gibson and J. Stevens, “Genetic exchange in the trypanosomatidae,” Advances in Parasitology, vol. 43, pp. 1–46, 1999. View at Scopus
  39. R. Brun, H. Hecker, and Z.-R. Lun, “Trypanosoma evansi and T. equiperdum: distribution, biology, treatment and phylogenetic relationship (a review),” Veterinary Parasitology, vol. 79, no. 2, pp. 95–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Borst, F. Fase-Fowler, and W. C. Gibson, “Kinetoplast DNA of Trypanosoma evansi,” Molecular and Biochemical Parasitology, vol. 23, no. 1, pp. 31–38, 1987. View at Scopus
  41. C. Clayton, T. Hausler, and J. Blattner, “Protein trafficking in kinetoplastid protozoa,” Microbiological Reviews, vol. 59, no. 3, pp. 325–344, 1995.
  42. P. Bastin, T. J. Pullen, F. F. Moreira-Leite, and K. Gull, “Inside and outside of the trypanosome flagellum: a multifunctional organelle,” Microbes and Infection, vol. 2, no. 15, pp. 1865–1874, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. S. L. Hajduk, A. M. Siqueira, and K. Vickerman, “Kinetoplast DNA of Bodo caudatus: a noncatenated structure,” Molecular and Cellular Biology, vol. 6, no. 12, pp. 4372–4378, 1986. View at Scopus
  44. L. Simpson, “The mitochondrial genome of kinetoplastid protozoa: genomic organization, transcription, replication, and evolution,” Annual Review of Microbiology, vol. 41, pp. 363–382, 1987.
  45. L. Simpson, N. Neckelmann, V. F. de la Cruz, et al., “Comparison of the maxicircle (mitochondrial) genomes of Leishmania tarentolae and Trypanosoma brucei at the level of nucleotide sequence,” Journal of Biological Chemistry, vol. 262, no. 13, pp. 6182–6196, 1987. View at Scopus
  46. S. A. Motyka, et al., “Overexpression of a cytochrome B5 reductase-like protein causes kinetoplast DNA loss in Trypanosoma brucei,” The Journal of Biological Chemistry, vol. 281, pp. 18499–18506, 2006.
  47. B. Liu, Y. Liu, S. A. Motyka, E. E. C. Agbo, and P. T. Englund, “Fellowship of the rings: the replication of kinetoplast DNA,” Trends in Parasitology, vol. 21, no. 8, pp. 363–369, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. N. R. Sturm and L. Simpson, “Kinetoplast DNA minicircles encode guide RNAs for editing of cytochrome oxidase subunit III mRNA,” Cell, vol. 61, no. 5, pp. 879–884, 1990. View at Publisher · View at Google Scholar · View at Scopus
  49. J. C. Mottram, S. D. Bell, R. G. Nelson, and J. D. Barry, “tRNAs of Trypanosoma brucei: unusual gene organization and mitochondrial importation,” Journal of Biological Chemistry, vol. 266, no. 27, pp. 18313–18317, 1991. View at Scopus
  50. B. F. de Vries, E. Mulder, J. P. J. Brakenhoff, P. Sloof, and R. Benne, “The variable region of the Trypanosoma brucei kinetoplast maxicircle: sequence and transcript analysis of a repetitive and a non-repetitive fragment,” Molecular and Biochemical Parasitology, vol. 27, no. 1, pp. 71–82, 1988. View at Scopus
  51. K. Hancock and S. L. Jahduk, “The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded,” Journal of Biological Chemistry, vol. 265, no. 31, pp. 19208–19215, 1990. View at Scopus
  52. P. Bastin, T. J. Pullen, T. Sherwin, and K. Gull, “Protein transport and flagellum assembly dynamics revealed by analysis of the paralysed trypanosome mutant snl-1,” Journal of Cell Science, vol. 112, no. 21, pp. 3769–3777, 1999. View at Scopus
  53. R. Broadhead, H. R. Dawe, H. Farr, et al., “Flagellar motility is required for the viability of the bloodstream trypanosome,” Nature, vol. 440, no. 7081, pp. 224–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Kohl, D. Robinson, and P. Bastin, “Novel roles for the flagellum in cell morphogenesis and cytokinesis of trypanosomes,” EMBO Journal, vol. 22, no. 20, pp. 5336–5346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Kohl and P. Bastin, “The flagellum of trypanosomes,” International Review of Cytology, vol. 244, pp. 227–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Overath and M. Engstler, “Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system,” Molecular Microbiology, vol. 53, no. 3, pp. 735–744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. P. Webster and D. G. Russell, “The flagellar pocket of trypanosomatids,” Parasitology Today, vol. 9, no. 6, pp. 201–206, 1993. View at Publisher · View at Google Scholar · View at Scopus
  58. M. C. Field and M. Carrington, “The trypanosome flagellar pocket,” Nature Reviews Microbiology, vol. 7, no. 11, pp. 775–786, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. K. D. Stuart, A. Schnaufer, N. L. Ernst, and A. K. Panigrahi, “Complex management: RNA editing in trypanosomes,” Trends in Biochemical Sciences, vol. 30, no. 2, pp. 97–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. A. K. Panigrahi, N. L. Ernst, G. J. Domingo, M. Fleck, R. Salavati, and K. D. Stuart, “Compositionally and functionally distinct editosomes in Trypanosoma brucei,” RNA, vol. 12, no. 6, pp. 1038–1049, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. D. E. Golden and S. L. Hajduk, “The importance of RNA structure in RNA editing and a potential proofreading mechanism for correct guide RNA:pre-mRNA binary complex formation,” Journal of Molecular Biology, vol. 359, no. 3, pp. 585–596, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. E. F. Michelotti, M. E. Harris, B. Adler, A. F. Torri, and S. L. Hajduk, “Trypanosoma brucei mitochondrial ribosomal RNA synthesis, processing and developmentally regulated expression,” Molecular and Biochemical Parasitology, vol. 54, no. 1, pp. 31–41, 1992. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Wickstead, K. Ersfeld, and K. Gull, “The small chromosomes of Trypanosama brucei involved in antigenic variation are constructed around repetititve palindromes,” Genome Research, vol. 14, no. 6, pp. 1014–1024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. F. Bringaud, N. Biteau, S. E. Melville, et al., “A new, expressed multigene family containing a hot spot for insertion of retroelements is associated with polymorphic subtelomeric regions of Trypanosoma brucei,” Eukaryotic Cell, vol. 1, no. 1, pp. 137–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Berriman, E. Ghedin, C. Hertz-Fowler, et al., “The genome of the African trypanosome Trypanosoma brucei,” Science, vol. 309, no. 5733, pp. 416–422, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. F. R. Opperdoes, “Compartmentation of carbohydrate metabolism in trypanosomes,” Annual Review of Microbiology, vol. 41, pp. 127–151, 1987.
  67. K. Vickerman, L. Tetley, K. A. K. Hendry, and C. M. R. Turner, “Biology of African trypanosomes in the tsetse fly,” Biology of the Cell, vol. 64, no. 2, pp. 109–119, 1988. View at Scopus
  68. F. R. Opperdoes, P. Baudhuin, and I. Coppens, “Purification, morphometric analysis, and characterization of the glycosomes (microbodies) of the protozoan hemoflagellate Trypanosoma brucei,” Journal of Cell Biology, vol. 98, no. 4, pp. 1178–1184, 1984. View at Scopus
  69. J. Blattner, S. Helfert, P. Michels, and C. Clayton, “Compartmentation of phosphoglycerate kinase in Trypanosoma brucei plays a critical role in parasite energy metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 20, pp. 11596–11600, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Helfert, A. M. Estévez, B. Bakker, P. Michels, and C. Clayton, “Roles of triosephosphate isomerase and aerobic metabolism in Trypanosoma brucei,” Biochemical Journal, vol. 357, no. 1, pp. 117–125, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. P. A. M. Michels, V. Hannaert, and F. Bringaud, “Metabolic aspects of glycosomes in trypanosomatidae—new data and views,” Parasitology Today, vol. 16, no. 11, pp. 482–489, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. B. M. Bakker, F. I. C. Mensonides, B. Teusink, P. Van Hoek, P. A. M. Michels, and H. V. Westerhoff, “Compartmentation protects trypanosomes from the dangerous design of glycolysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 5, pp. 2087–2092, 2000. View at Publisher · View at Google Scholar · View at Scopus
  73. C. Guerra-Giraldez, L. Quijada, and C. E. Clayton, “Compartmentation of enzymes in a microbody, the glycosome, is essential in Trypanosoma brucei,” Journal of Cell Science, vol. 115, no. 13, pp. 2651–2658, 2002. View at Scopus
  74. C. Colasante, M. Ellis, T. Ruppert, and F. Voncken, “Comparative proteomics of glycosomes from bloodstream form and procyclic culture form Trypanosoma brucei brucei,” Proteomics, vol. 6, no. 11, pp. 3275–3293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. F. R. Opperdoes and J.-P. Szikora, “In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes,” Molecular and Biochemical Parasitology, vol. 147, no. 2, pp. 193–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. M. C. Field, J. H. Lumb, V. O. Adung'a, N. G. Jones, and M. Engstler, “Macromolecular trafficking and immune evasion in African trypanosomes,” International Review of Cell and Molecular Biology, vol. 278, pp. 1–67, 2009. View at Scopus
  77. M. Engstler, T. Pfohl, S. Herminghaus, et al., “Hydrodynamic flow-mediated protein sorting on the cell surface of trypanosomes,” Cell, vol. 131, no. 3, pp. 505–515, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. E. Pays, S. Lips, D. Nolan, L. Vanhamme, and D. Pérez-Morga, “The VSG expression sites of Trypanosoma brucei: multipurpose tools for the adaptation of the parasite to mammalian hosts,” Molecular and Biochemical Parasitology, vol. 114, no. 1, pp. 1–16, 2001. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Vanhamme, P. Poelvoorde, A. Pays, P. Tebabi, H. Van Xong, and E. Pays, “Differential RNA elongation controls the variant surface glycoprotein gene expression sites of Trypanosoma brucei,” Molecular Microbiology, vol. 36, no. 2, pp. 328–340, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Pays, L. Vanhamme, and D. Pérez-Morga, “Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries,” Current Opinion in Microbiology, vol. 7, no. 4, pp. 369–374, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Navarro and K. Gull, “A poll transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei,” Nature, vol. 414, no. 6865, pp. 759–763, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. E. Pays, “Regulation of antigen gene expression in Trypanosoma brucei,” Trends in Parasitology, vol. 21, no. 11, pp. 517–520, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Pays, “The variant surface glycoprotein as a tool for adaptation in African trypanosomes,” Microbes and Infection, vol. 8, no. 3, pp. 930–937, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. P. Borst and S. Ulbert, “Control of VSG gene expression sites,” Molecular and Biochemical Parasitology, vol. 114, no. 1, pp. 17–27, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. W. Bitter, H. Gerrits, R. Kieft, and P. Borst, “The role of transferrin-receptor variation in the host range of Trypanosoma brucei,” Nature, vol. 391, no. 6666, pp. 499–502, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Pays, M. Guyaux, and D. Aerts, “Telomeric reciprocal recombination as a possible mechanism for antigenic variation in trypanosomes,” Nature, vol. 316, no. 6028, pp. 562–564, 1985. View at Scopus
  87. E. Pays, S. Van Assel, M. Laurent, et al., “Gene conversion as a mechanism for antigenic variation in Trypanosomes,” Cell, vol. 34, no. 2, pp. 371–381, 1983. View at Scopus
  88. G. Rudenko, R. McCulloch, A. Dirks-Mulder, and P. Borst, “Telomere exchange can be an important mechanism of variant surface glycoprotein gene switching in Trypanosoma brucei,” Molecular and Biochemical Parasitology, vol. 80, no. 1, pp. 65–75, 1996. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Poelvoorde, L. Vanhamme, J. Van Den Abbeele, W. M. Switzer, and E. Pays, “Distribution of apolipoprotein L-I and trypanosome lytic activity among primate sera,” Molecular and Biochemical Parasitology, vol. 134, no. 1, pp. 155–157, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. E. B. Lugli, M. Pouliot, M. D. P. M. Portela, M. R. Loomis, and J. Raper, “Characterization of primate trypanosome lytic factors,” Molecular and Biochemical Parasitology, vol. 138, no. 1, pp. 9–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. C. De Greef, E. Chimfwembe, J. Kihang'a Wabacha, E. Bajyana Songa, and R. Hamers, “Only the serum-resistant bloodstream forms of Trypanosoma brucei rhodesiense express the serum resistance associated (SRA) protein,” Annales de la Societe Belge de Medecine Tropicale, vol. 72, supplement 1, pp. 13–21, 1992.
  92. C. De Greef, H. Imberechts, G. Matthyssens, N. Van Meirvenne, and R. Hamers, “A gene expressed only in serum-resistant variants of Trypanosoma brucei rhodesiense,” Molecular and Biochemical Parasitology, vol. 36, no. 2, pp. 169–176, 1989. View at Scopus
  93. E. Pays, B. Vanhollebeke, L. Vanhamme, F. Paturiaux-Hanocq, D. P. Nolan, and D. Pérez-Morga, “The trypanolytic factor of human serum,” Nature Reviews Microbiology, vol. 4, no. 6, pp. 477–486, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. H. V. Xong, L. Vanhamme, M. Chamekh, et al., “A VSG expression site-associated gene confers resistance to human serum in Trypanosoma rhodesiense,” Cell, vol. 95, no. 6, pp. 839–846, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. N. van Meirvenne, E. Magnus, and P. G. Janssens, “The effect of normal human serum on trypanosomes of distinct antigenic type (ETat 1 to 12) isolated from a strain of Trypanosoma brucei rhodesiense,” Annales de la Societe Belge de Medecine Tropicale, vol. 56, no. 1, pp. 55–63, 1976. View at Scopus
  96. S. C. Welburn, K. Picozzi, E. M. Fèvre, et al., “Identification of human-infective trypanosomes in animal reservoir of sleeping sickness in Uganda by means of serum-resistance-associated (SRA) gene,” The Lancet, vol. 358, no. 9298, pp. 2017–2019, 2001. View at Publisher · View at Google Scholar · View at Scopus
  97. C. De Greef and R. Hamers, “The serum resistance-associated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein,” Molecular and Biochemical Parasitology, vol. 68, no. 2, pp. 277–284, 1994. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Vanhamme and E. Pays, “The trypanosome lytic factor of human serum and the molecular basis of sleeping sickness,” International Journal for Parasitology, vol. 34, no. 8, pp. 887–898, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. L. Vanhamme, H. Renauld, L. Lecordier, P. Poelvoorde, J. Van Den Abbeele, and E. Pays, “The Trypanosoma brucei reference strain TREU927/4 contains T. brucei rhodesiense-specific SRA sequences, but displays a distinct phenotype of relative resistance to human serum,” Molecular and Biochemical Parasitology, vol. 135, no. 1, pp. 39–47, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Campillo and M. Carrington, “The origin of the serum resistance associated (SRA) gene and a model of the structure of the SRA polypeptide from Trypanosoma brucei rhodesiense,” Molecular and Biochemical Parasitology, vol. 127, no. 1, pp. 79–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  101. M. L. Blum, J. A. Down, A. M. Gurnett, M. Carrington, M. J. Turner, and D. C. Wiley, “A structural motif in the variant surface glycoproteins of Trypanosoma brucei,” Nature, vol. 362, no. 6421, pp. 603–609, 1993. View at Publisher · View at Google Scholar · View at Scopus
  102. L. Vanhamme, F. Paturiaux-Hanocq, P. Poelvoorde, et al., “Apolipoprotein L-I is the trypanosome lytic factor of human serum,” Nature, vol. 422, no. 6927, pp. 83–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. T. N. Baral, S. Magez, B. Stijlemans, et al., “Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor,” Nature Medicine, vol. 12, no. 5, pp. 580–584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Ruvolo, D. Pan, S. Zehr, T. Goldberg, T. R. Disotell, and M. Von Dornum, “Gene trees and hominoid phylogeny,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 19, pp. 8900–8904, 1994. View at Publisher · View at Google Scholar · View at Scopus
  105. M. R. Rifkin, “Role of phospholipids in the cytotoxic action of high density lipoprotein on trypanosomes,” Journal of Lipid Research, vol. 32, no. 4, pp. 639–647, 1991. View at Scopus
  106. S. L. Hajduk, D. R. Moore, J. Vasudevacharya, et al., “Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein,” Journal of Biological Chemistry, vol. 264, no. 9, pp. 5210–5217, 1989. View at Scopus
  107. K. M. Hager, M. A. Pierce, D. R. Moore, E. M. Tytler, J. D. Esko, and S. L. Hajduk, “Endocytosis of a cytotoxic human high density lipoprotein results in disruption of acidic intracellular vesicles and subsequent killing of African trypanosomes,” Journal of Cell Biology, vol. 126, no. 1, pp. 155–167, 1994. View at Publisher · View at Google Scholar · View at Scopus
  108. K. M. Hager and S. L. Hajduk, “Mechanism of resistance of African trypanosomes to cytotoxic human HDL,” Nature, vol. 385, no. 6619, pp. 823–826, 1997. View at Publisher · View at Google Scholar · View at Scopus
  109. H. P. Green, M. D. P. M. Portela, E. N. St. Jean, E. B. Lugli, and J. Raper, “Evidence for a Trypanosoma brucei lipoprotein scavenger receptor,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 422–427, 2003. View at Publisher · View at Google Scholar · View at Scopus
  110. A. B. Smith, J. D. Esko, and S. L. Hajduk, “Killing of trypanosomes by the human haptoglobin-related protein,” Science, vol. 268, no. 5208, pp. 284–286, 1995. View at Scopus
  111. J. Raper, R. Fung, J. Ghiso, V. Nussenzweig, and S. Tomlinson, “Characterization of a novel trypanosome lytic factor from human serum,” Infection and Immunity, vol. 67, no. 4, pp. 1910–1916, 1999. View at Scopus
  112. M. D. P. Molina-Portela, E. B. Lugli, E. Recio-Pinto, and J. Raper, “Trypanosome lytic factor, a subclass of high-density lipoprotein, forms cation-selective pores in membranes,” Molecular and Biochemical Parasitology, vol. 144, no. 2, pp. 218–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. S. Tomlinson, M. Muranjan, V. Nussenzweig, and J. Raper, “Haptoglobin-related protein and apolipoprotein AI are components of the two trypanolytic factors in human serum,” Molecular and Biochemical Parasitology, vol. 86, no. 1, pp. 117–120, 1997. View at Publisher · View at Google Scholar · View at Scopus
  114. J. Drain, J. R. Bishop, and S. L. Hajduk, “Haptoglobin-related protein mediates trypanosome lytic factor binding to trypanosomes,” Journal of Biological Chemistry, vol. 276, no. 32, pp. 30254–30260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. A. B. Smith and S. L. Hajduk, “Identification of haptoglobin as a natural inhibitor of trypanocidal activity in human serum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 22, pp. 10262–10266, 1995. View at Publisher · View at Google Scholar · View at Scopus
  116. D. Pérez-Morga, B. Vanhollebeke, F. Paturiaux-Hanocq, et al., “Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes,” Science, vol. 309, no. 5733, pp. 469–472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  117. A. M. Shiflett, J. R. Bishop, A. Pahwa, and S. L. Hajduk, “Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes,” Journal of Biological Chemistry, vol. 280, no. 38, pp. 32578–32585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. M. P. Molina-Portela, M. Samanovic, and J. Raper, “Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model,” Journal of Experimental Medicine, vol. 205, no. 8, pp. 1721–1728, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. R. Thomson, P. Molina-Portela, H. Mott, M. Carrington, and J. Raper, “Hydrodynamic gene delivery of baboon trypanosome lytic factor eliminates both animal and human-infective African trypanosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 46, pp. 19509–19514, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Samanovic, M. P. Molina-Portela, A.-D. C. Chessler, B. A. Burleigh, and J. Raper, “Trypanosome lytic factor, an antimicrobial high-density lipoprotein, ameliorates Leishmania infection,” PLoS Pathogens, vol. 5, no. 1, Article ID e1000276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. R. Thomson, M. Samanovic, and J. Raper, “Activity of trypanosome lytic factor: a novel component of innate immunity,” Future Microbiology, vol. 4, no. 7, pp. 789–796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. P. N. Duchateau, C. R. Pullinger, R. E. Orellana, et al., “Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L,” Journal of Biological Chemistry, vol. 272, no. 41, pp. 25576–25582, 1997. View at Publisher · View at Google Scholar · View at Scopus
  123. P. N. Duchateau, C. R. Pullinger, M. H. Cho, C. Eng, and J. P. Kane, “Apolipoprotein L gene family: tissue-specific expression, splicing, promoter regions; discovery of a new gene,” Journal of Lipid Research, vol. 42, no. 4, pp. 620–630, 2001. View at Scopus
  124. N. M. Page, D. J. Butlin, K. Lomthaisong, and P. J. Lowry, “The human apolipoprotein L gene cluster: identification, classification, and sites of distribution,” Genomics, vol. 74, no. 1, pp. 71–78, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. J. M. Harrington, S. Howell, and S. L. Hajduk, “Membrane permeabilization by trypanosome lytic factor, a cytolytic human high density lipoprotein,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13505–13512, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. I. Roditi and C. Clayton, “An unambiguous nomenclature for the major surface glycoproteins of the procyclic form of Trypanosoma brucei,” Molecular and Biochemical Parasitology, vol. 103, no. 1, pp. 99–100, 1999. View at Publisher · View at Google Scholar · View at Scopus
  127. S. Urwyler, E. Vassella, J. Van Den Abbeele, et al., “Expression of procyclin mRNAs during cyclical transmission of Trypanosoma brucei,” PLoS Pathogens, vol. 1, no. 3, Article ID e22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. K. Vickerman and A. G. Luckins, “Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody,” Nature, vol. 224, no. 5224, pp. 1125–1126, 1969. View at Publisher · View at Google Scholar · View at Scopus
  129. G. A. M. Cross, “Identification, purification and properties of clone specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei,” Parasitology, vol. 71, no. 3, pp. 393–417, 1975. View at Scopus
  130. K. Ziegelbauer and P. Overath, “Organization of two invariant surface glycoproteins in the surface coat of Trypanosoma brucei,” Infection and Immunity, vol. 61, no. 11, pp. 4540–4545, 1993. View at Scopus
  131. A. Ferrante and A. C. Callison, “Alternative pathway activation of complement by African trypanosomes lacking a glycoprotein coat,” Parasite Immunology, vol. 5, no. 5, pp. 491–498, 1983. View at Scopus
  132. M. Carrington and J. Boothroyd, “Implications of conserved structural motifs in disparate trypanosome surface proteins,” Molecular and Biochemical Parasitology, vol. 81, no. 2, pp. 119–126, 1996. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Carrington, N. Miller, M. Blum, I. Roditi, D. Wiley, and M. Turner, “Variant specific glycoprotein of Trypanosoma brucei consists of two domains each having an independently conserved pattern of cysteine residues,” Journal of Molecular Biology, vol. 221, no. 3, pp. 823–835, 1991. View at Publisher · View at Google Scholar · View at Scopus
  134. A. Mehlert, J. M. Richardson, and M. A. J. Ferguson, “Structure of the glycosylphosphatidylinositol membrane anchor glycan of a class-2 variant surface glycoprotein from Trypanosoma brucei,” Journal of Molecular Biology, vol. 277, no. 2, pp. 379–392, 1998. View at Publisher · View at Google Scholar · View at Scopus
  135. O. C. Hutchinson, W. Smith, N. G. Jones, A. Chattopadhyay, S. C. Welburn, and M. Carrington, “VSG structure: similar N-terminal domains can form functional VSGs with different types of C-terminal domain,” Molecular and Biochemical Parasitology, vol. 130, no. 2, pp. 127–131, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. M. A. J. Ferguson, S. W. Homans, R. A. Dwek, and T. W. Rademacher, “Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane,” Science, vol. 239, no. 4841, part 1, pp. 753–759, 1988. View at Scopus
  137. M. A. McDowell, D. M. Ransom, and J. D. Bangs, “Glycosylphosphatidylinositol-dependent secretory transport in Trypanosoma brucei,” Biochemical Journal, vol. 335, no. 3, pp. 681–689, 1998. View at Scopus
  138. D. Freymann, J. Down, M. Carrington, I. Roditi, M. Turner, and D. Wiley, “2.9 Å resolution structure of the N-terminal domain of a variant surface glycoprotein from Trypanosoma brucei,” Journal of Molecular Biology, vol. 216, no. 1, pp. 141–160, 1990. View at Scopus
  139. G. A. Cross, “Structure of the variant glycoproteins and surface coat of Trypanosoma brucei,” Philosophical Transactions of the Royal Society B, vol. 307, no. 1131, pp. 3–12, 1984. View at Scopus
  140. P. T. Enghund, “The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors,” Annual Review of Biochemistry, vol. 62, pp. 121–138, 1993.
  141. M. A. Ferguson, S. W. Homans, R. A. Dwek, and T. W. Rademacher, “The glycosylphosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein,” Biochemical Society Transactions, vol. 16, no. 3, pp. 265–268, 1988.
  142. V. P. Triggs and J. D. Bangs, “Glycosylphosphatidylinositol-dependent protein trafficking in bloodstream stage Trypanosoma brucei,” Eukaryotic Cell, vol. 2, no. 1, pp. 76–83, 2003. View at Publisher · View at Google Scholar · View at Scopus
  143. U. Böhme and G. A. M. Cross, “Mutational analysis of the variant surface glycoprotein GPI-anchor signal sequence in Trypanosoma brucei,” Journal of Cell Science, vol. 115, no. 4, pp. 805–816, 2002. View at Scopus
  144. W. J. Masterson, T. L. Doering, G. W. Hart, and P. T. Englund, “A novel pathway for glycan assembly: biosynthesis of the glycosyl-phosphatidylinositol anchor of the trypanosome variant surface glycoprotein,” Cell, vol. 56, no. 5, pp. 793–800, 1989. View at Scopus
  145. M. A. J. Ferguson and A. F. Williams, “Cell-surface anchoring of proteins via glycosyl-phosphatidylinositol structures,” Annual Review of Biochemistry, vol. 57, pp. 285–320, 1988.
  146. M. A. J. Ferguson, “The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research,” Journal of Cell Science, vol. 112, no. 17, pp. 2799–2809, 1999. View at Scopus
  147. K. S. Paul, D. Jiang, Y. S. Morita, and P. T. Englund, “Fatty acid synthesis in African trypanosomes: a solution to the myristate mystery,” Trends in Parasitology, vol. 17, no. 8, pp. 381–387, 2001. View at Publisher · View at Google Scholar · View at Scopus
  148. M. A. J. Ferguson and G. A. M. Cross, “Myristylation of the membrane form of a Trypanosoma brucei variant surface glycoprotein,” The Journal of Biological Chemistry, vol. 259, no. 5, pp. 3011–3015, 1984. View at Scopus
  149. T. L. Doering, J. Raper, L. U. Buxbaum, et al., “An analog of myristic acid with selective toxicity for African trypanosomes,” Science, vol. 252, no. 5014, pp. 1851–1854, 1991. View at Scopus
  150. Y. Hong and T. Kinoshita, “Trypanosome glycosylphosphatidylinositol biosynthesis,” Korean Journal of Parasitology, vol. 47, no. 3, pp. 197–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Carrington, N. Carnall, M. S. Crow, et al., “The properties and function of the glycosylphosphatidylinositol-phospholipase C in Trypanosoma brucei,” Molecular and Biochemical Parasitology, vol. 91, no. 1, pp. 153–164, 1998. View at Publisher · View at Google Scholar · View at Scopus
  152. D. J. Grab, P. Webster, S. Ito, et al., “Subcellular localization of a variable surface glycoprotein phosphatidylinositol-specific phospholipase-C in African trypanosomes,” Journal of Cell Biology, vol. 105, no. 2, pp. 737–746, 1987. View at Scopus
  153. K. Mensa-Wilmot, D. Hereld, and P. T. Englund, “Genomic organization, chromosomal localization, and developmentally regulated expression of the glycosyl-phosphatidylinositol-specific phospholipase C of Trypanosoma brucei,” Molecular and Cellular Biology, vol. 10, no. 2, pp. 720–726, 1990. View at Scopus
  154. M. Carrington, R. Bulow, H. Reinke, et al., “Sequence and expression of the glycosyl-phosphatidylinositol-specific phospholipase C of Trypanosoma brucei,” Molecular and Biochemical Parasitology, vol. 33, no. 3, pp. 289–296, 1989. View at Publisher · View at Google Scholar · View at Scopus
  155. M. L. C. De Almeida, M. Geuskens, and E. Pays, “Cell lysis induces redistribution of the GPI-anchored variant surface glycoprotein on both faces of the plasma membrane of Trypanosoma brucei,” Journal of Cell Science, vol. 112, no. part 23, pp. 4461–4473, 1999. View at Scopus
  156. M. A. J. Ferguson, K. Haldar, and G. A. M. Cross, “Trypanosoma brucei variant surface glycoprotein has a sn-1,2-dimyristyl glycerol membrane anchor at its COOH terminus,” The Journal of Biological Chemistry, vol. 260, no. 8, pp. 4963–4968, 1985. View at Scopus
  157. M. A. J. Ferguson, M. G. Low, and G. A. M. Cross, “Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein,” The Journal of Biological Chemistry, vol. 260, no. 27, pp. 14547–14555, 1985. View at Scopus
  158. M. L. Cardoso de Almeida and M. J. Turner, “The membrane form of variant surface glycoproteins of Trypanosoma brucei,” Nature, vol. 302, no. 5906, pp. 349–352, 1983. View at Scopus
  159. A. A. Holder and G. A. M. Cross, “Glycopeptides from variant surface glycoproteins of Trypanosoma brucei. C-terminal location of antigenically cross-reacting carbohydrate moieties,” Molecular and Biochemical Parasitology, vol. 2, no. 3-4, pp. 135–150, 1981. View at Scopus
  160. S. E. Zamze, M. A.J. Ferguson, R. Collins, R. A. Dwek, and T. W. Rademacher, “Characterization of the cross-reacting determinant (CRD) of the glycosyl-phosphatidylinositol membrane anchor of Trypanosoma brucei variant surface glycoprotein,” European Journal of Biochemistry, vol. 176, no. 3, pp. 527–534, 1988. View at Scopus
  161. R. Bulow, C. Nonnengasser, and P. Overath, “Release of the variant surface glycoprotein during differentiation of bloodstream to procyclic forms of Trypanosoma brucei,” Molecular and Biochemical Parasitology, vol. 32, no. 1, pp. 85–92, 1989. View at Scopus
  162. S. Rolin, J. Hanocq-Quertier, F. Paturiaux-Hanocq, et al., “Simultaneous but independent activation of adenylate cyclase and glycosylphosphatidylinositol-phospholipase C under stress conditions in Trypanosoma brucei,” The Journal of Biological Chemistry, vol. 271, no. 18, pp. 10844–10852, 1996. View at Publisher · View at Google Scholar · View at Scopus
  163. M. Carrington, D. Walters, and H. Webb, “The biology of the glycosylphosphatidylinositol-specific phospholipase C of Trypanosoma brucei,” Cell Biology International Reports, vol. 15, no. 11, pp. 1101–1114, 1991. View at Publisher · View at Google Scholar · View at Scopus
  164. H. Webb, N. Carnall, L. Vanhamme, et al., “The GPI-phospholipase C of Trypanosoma brucei is non essential but influences parasitemia in mice,” Journal of Cell Biology, vol. 139, no. 1, pp. 103–114, 1997. View at Publisher · View at Google Scholar · View at Scopus
  165. P. Overath, M. Chaudhri, D. Steverding, and K. Ziegelbauer, “Invariant surface proteins in bloodstream forms of Trypanosoma brucei,” Parasitology Today, vol. 10, no. 2, pp. 53–58, 1994. View at Publisher · View at Google Scholar · View at Scopus
  166. K. Ziegelbauer and P. Overath, “Identification of invariant surface glycoproteins in the bloodstream stage of Trypanosoma brucei,” The Journal of Biological Chemistry, vol. 267, no. 15, pp. 10791–10796, 1992. View at Scopus
  167. D. G. Jackson, H. J. Windle, and H. P. Voorheis, “The identification, purification, and characterization of two invariant surface glycoproteins located beneath the surface coat barrier of bloodstream forms of Trypanosoma brucei,” The Journal of Biological Chemistry, vol. 268, no. 11, pp. 8085–8095, 1993. View at Scopus
  168. D. P. Nolan, D. G. Jackson, H. J. Windle, et al., “Characterization of a novel, stage-specific, invariant surface protein in Trypanosoma brucei containing an internal, serine-rich, repetitive motif,” The Journal of Biological Chemistry, vol. 272, no. 46, pp. 29212–29221, 1997. View at Publisher · View at Google Scholar · View at Scopus
  169. D. Schell, N. K. Borowy, and P. Overath, “Transferrin is a growth factor for the bloodstream form of Trypanosoma brucei,” Parasitology Research, vol. 77, no. 7, pp. 558–560, 1991.
  170. D. Steverding, Y. D. Stierhof, H. Fuchs, R. Tauber, and P. Overath, “Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei,” Journal of Cell Biology, vol. 131, no. 5, pp. 1173–1182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  171. D. Steverding, “Bloodstream forms of Trypanosoma brucei require only small amounts of iron for growth,” Parasitology Research, vol. 84, no. 1, pp. 59–62, 1998. View at Scopus
  172. D. Steverding, “The significance of transferrin receptor variation in Trypanosoma brucei,” Trends in Parasitology, vol. 19, no. 3, pp. 125–127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  173. H. A. Huebers and C. A. Finch, “The physiology of transferrin and transferrin receptors,” Physiological Reviews, vol. 67, no. 2, pp. 520–582, 1987. View at Scopus
  174. D. Salmon, J. Hanocq-Quertier, F. Paturiaux-Hanocq, et al., “Characterization of the ligand-binding site of the transferrin receptor in Trypanosoma brucei demonstrates a structural relationship with the N-terminal domain of the variant surface glycoprotein,” EMBO Journal, vol. 16, no. 24, pp. 7272–7278, 1997. View at Publisher · View at Google Scholar · View at Scopus
  175. D. Steverding, “The transferrin receptor of Trypanosoma brucei,” Parasitology International, vol. 48, no. 3, pp. 191–198, 2000. View at Publisher · View at Google Scholar · View at Scopus
  176. I. Coppens, Ph. Bastin, F. R. Opperdoes, P. Baudhuin, and P. J. Courtoy, “Trypanosoma brucei brucei: antigenic stability of its LDL receptor and immunological cross-reactivity with the LDL receptor of the mammalian host,” Experimental Parasitology, vol. 74, no. 1, pp. 77–86, 1992. View at Publisher · View at Google Scholar · View at Scopus
  177. I. Coppens, P. Bastin, P. J. Courtoy, P. Baudhuin, and F. R. Opperdoes, “A rapid method purifies a glycoprotein of Mr 145,000 as the LDL receptor of Trypanosoma brucei brucei,” Biochemical and Biophysical Research Communications, vol. 178, no. 1, pp. 185–191, 1991. View at Publisher · View at Google Scholar · View at Scopus
  178. E. Tetaud, M. P. Barrett, F. Bringaud, and T. Baltz, “Kinetoplastid glucose transporters,” Biochemical Journal, vol. 325, no. 3, pp. 569–580, 1997. View at Scopus
  179. M. A. Sanchez, S. Drutman, M. Van Ampting, K. Matthews, and S. M. Landfear, “A novel purine nucleoside transporter whose expression is up-regulated in the short stumpy form of the Trypanosoma brucei life cycle,” Molecular and Biochemical Parasitology, vol. 136, no. 2, pp. 265–272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  180. P. Vincendeau and B. Bouteille, “Immunology and immunopathology of African trypanosomiasis,” Anais da Academia Brasileira de Ciencias, vol. 78, no. 4, pp. 645–665, 2006. View at Scopus
  181. B. Stijlemans, M. Guilliams, G. Raes, A. Beschin, S. Magez, and P. De Baetselier, “African trypanosomosis: from immune escape and immunopathology to immune intervention,” Veterinary Parasitology, vol. 148, no. 1, pp. 3–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  182. C. A. Janeway Jr. and R. Medzhitov, “Innate immune recognition,” Annual Review of Immunology, vol. 20, pp. 197–216, 2002.
  183. K. Takeda, T. Kaisho, and S. Akira, “Toll-like receptors,” Annual Review of Immunology, vol. 21, pp. 335–376, 2003. View at Publisher · View at Google Scholar · View at Scopus
  184. L. K.M. Shoda, K. A. Kegerreis, C. E. Suarez, et al., “DNA from protozoan parasites Babesia bovis, Trypanosoma cruzi, and T. brucei is mitogenic for B lymphocytes and stimulates macrophage expression of interleukin-12, tumor necrosis factor alpha, and nitric oxide,” Infection and Immunity, vol. 69, no. 4, pp. 2162–2171, 2001. View at Publisher · View at Google Scholar · View at Scopus
  185. T. H. Harris, N. M. Cooney, J. M. Mansfield, and D. M. Paulnock, “Signal transduction, gene transcription, and cytokine production triggered in macrophages by exposure to trypanosome DNA,” Infection and Immunity, vol. 74, no. 8, pp. 4530–4537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  186. M. B. Drennan, B. Stijlemans, J. Van Den Abbeele, et al., “The induction of a type 1 immune response following a Trypanosoma brucei infection is MyD88 dependent,” Journal of Immunology, vol. 175, no. 4, pp. 2501–2509, 2005. View at Scopus
  187. I. C. Almeida, M. M. Camargo, D. O. Procópio, et al., “Highly purified glycosylphosphatidylinositols from Trypanosoma cruzi are potent proinflammatory agents,” EMBO Journal, vol. 19, no. 7, pp. 1476–1485, 2000. View at Scopus
  188. S. P. Coller, J. M. Mansfield, and D. M. Paulnock, “Glycosylinositolphosphate soluble variant surface glycoprotein inhibits IFN-γ-induced nitric oxide production via reduction in STAT1 phosphorylation in African trypanosomiasis,” Journal of Immunology, vol. 171, no. 3, pp. 1466–1472, 2003. View at Scopus
  189. S. D. Tachado and L. Schofield, “Glycosylphosphatidylinositol toxin of Trypanosoma brucei regulates IL-1α and TNF-α expression in macrophages by protein tyrosine kinase mediated signal transduction,” Biochemical and Biophysical Research Communications, vol. 205, no. 2, pp. 984–991, 1994. View at Publisher · View at Google Scholar · View at Scopus
  190. M. Shi, G. Wei, W. Pan, and H. Tabel, “Trypanosoma congolense infections: antibody-mediated phagocytosis by Kupffer cells,” Journal of Leukocyte Biology, vol. 76, no. 2, pp. 399–405, 2004. View at Publisher · View at Google Scholar · View at Scopus
  191. N. A. Mabbott, I. A. Sutherland, and J. M. Sternberg, “Trypanosoma brucei is protected from the cytostatic effects of nitric oxide under in vivo conditions,” Parasitology Research, vol. 80, no. 8, pp. 687–690, 1994.
  192. J. M. Sternberg and N. A. Mabbott, “Nitric oxide-mediated suppression of T cell responses during Trypanosoma brucei infection: soluble trypanosome products and interferon-γ are synergistic inducers of nitric oxide synthase,” European Journal of Immunology, vol. 26, no. 3, pp. 539–543, 1996. View at Publisher · View at Google Scholar · View at Scopus
  193. R. S. Kaushik, J. E. Uzonna, Y. Zhang, J. R. Gordon, and H. Tabel, “Innate resistance to experimental African trypanosomiasis: differences in cytokine (TNF-α, IL-6, IL-10 and IL-12) production by bone marrow-derived macrophages from resistant and susceptible mice,” Cytokine, vol. 12, no. 7, pp. 1024–1034, 2000. View at Publisher · View at Google Scholar · View at Scopus
  194. S. Magez, M. Geuskens, A. Beschin, et al., “Specific uptake of tumor necrosis factor-α is involved in growth control of Trypanosoma brucei,” Journal of Cell Biology, vol. 137, no. 3, pp. 715–727, 1997. View at Publisher · View at Google Scholar · View at Scopus
  195. B. Namangala, P. de Baetselier, and A. Beschin, “Both type-I and type-II responses contribute to murine trypanotolerance,” Journal of Veterinary Medical Science, vol. 71, no. 3, pp. 313–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. C. J. Hertz, H. Filutowicz, and J. M. Mansfield, “Resistance to the African trypanosomes is IFN-γ dependent,” Journal of Immunology, vol. 161, no. 12, pp. 6775–6783, 1998. View at Scopus
  197. J. E. Uzonna, R. S. Kaushik, J. R. Gordon, and H. Tabel, “Cytokines and antibody responses during Trypanosoma congolense infections in two inbred mouse strains that differ in resistance,” Parasite Immunology, vol. 21, no. 2, pp. 57–71, 1999. View at Publisher · View at Google Scholar · View at Scopus
  198. N. Inoue, M. Inoue, K. Kuriki, et al., “Interleukin 4 is a crucial cytokine in controlling Trypanosoma brucei gambiense infection in mice,” Veterinary Parasitology, vol. 86, no. 3, pp. 173–184, 1999. View at Publisher · View at Google Scholar · View at Scopus
  199. B. Mertens, K. Taylor, C. Muriuki, and M. Rocchi, “Cytokine mRNA profiles in trypanotolerant and trypanosusceptible cattle infected with the protozoan parasite Trypanosoma congolense: protective role for interleukin-4?” Journal of Interferon and Cytokine Research, vol. 19, no. 1, pp. 59–65, 1999. View at Publisher · View at Google Scholar · View at Scopus
  200. S. Magez, M. Radwanska, M. Drennan, et al., “Interferon-γ and nitric oxide in combination with antibodies are key protective host immune factors during Trypanosoma congolense Tc13 infections,” Journal of Infectious Diseases, vol. 193, no. 11, pp. 1575–1583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  201. T. N. Baral, P. De Baetselier, F. Brombacher, and S. Magez, “Control of Trypanosoma evansi infection is IgM mediated and does not require a type I inflammatory response,” Journal of Infectious Diseases, vol. 195, no. 10, pp. 1513–1520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  202. M. Forlenza, M. Nakao, I. Wibowo, et al., “Nitric oxide hinders antibody clearance from the surface of Trypanoplasma borreli and increases susceptibility to complement-mediated lysis,” Molecular Immunology, vol. 46, no. 16, pp. 3188–3197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  203. S. Magez, R. Lucas, A. Darji, E. Bajyana Songa, R. Hamers, and P. De Baetselier, “Murine tumour necrosis factor plays a protective role during the initial phase of the experimental infection with Trypanosoma brucei brucei,” Parasite Immunology, vol. 15, no. 11, pp. 635–641, 1993. View at Scopus
  204. S. Magez, M. Radwanska, A. Beschin, K. Sekikawa, and P. De Baetselier, “Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections,” Infection and Immunity, vol. 67, no. 6, pp. 3128–3132, 1999. View at Scopus
  205. B. Namangala, P. De Baetselier, L. Brijs, et al., “Attenuation of Trypanosoma brucei is associated with reduced immunosuppression and concomitant production of Th2 lymphokines,” Journal of Infectious Diseases, vol. 181, no. 3, pp. 1110–1120, 2000. View at Publisher · View at Google Scholar · View at Scopus
  206. J. M. Sternberg, J. Rodgers, B. Bradley, L. MacLean, M. Murray, and P. G. E. Kennedy, “Meningoencephalitic African trypanosomiasis: brain IL-10 and IL-6 are associated with protection from neuro-inflammatory pathology,” Journal of Neuroimmunology, vol. 167, no. 1-2, pp. 81–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  207. P. G. E. Kennedy, “Cytokines in central nervous system trypanosomiasis: cause, effect or both?” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 103, no. 3, pp. 213–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. P. Baetselier, B. Namangala, W. Noël, L. Brys, E. Pays, and A. Beschin, “Alternative versus classical macrophage activation during experimental African trypanosomosis,” International Journal for Parasitology, vol. 31, no. 5-6, pp. 575–587, 2001. View at Scopus
  209. K. M. Hudson, C. Byner, J. Freeman, and R. J. Terry, “Immunodepression, high IgM levels and evasion of the immune response in murine trypanosomiasis,” Nature, vol. 264, no. 5583, pp. 256–258, 1976. View at Scopus
  210. A. G. Luckins and D. Mehlitz, “Evaluation of an indirect fluorescent antibody test, enzyme-linked immunosorbent assay and quantification of immunoglobulins in the diagnosis of bovine trypanosomiasis,” Tropical Animal Health and Production, vol. 10, no. 3, pp. 149–159, 1978. View at Scopus
  211. A. G. Luckins and D. Mehlitz, “Observations on serum immunoglobulin levels in cattle infected with Trypanosoma brucei, T. vivax and T. congolense,” Annals of Tropical Medicine and Parasitology, vol. 70, no. 4, pp. 479–480, 1976. View at Scopus
  212. J. Buza, M. Sileghem, P. Gwakisa, and J. Naessens, “CD5+ B lymphocytes are the main source of antibodies reactive with non-parasite antigens in Trypanosoma congolense-infected cattle,” Immunology, vol. 92, no. 2, pp. 226–233, 1997. View at Scopus
  213. D. J. L. Williams, K. Taylor, J. Newson, B. Gichuki, and J. Naessens, “The role of anti-variable surface glycoprotein antibody responses in bovine trypanotolerance,” Parasite Immunology, vol. 18, no. 4, pp. 209–218, 1996.
  214. T. Kobayakawa, J. Louis, S. Izui, and P. H. Lambert, “Autoimmune response to DNA, red blood cells, and thymocyte antigens in association with polyclonal antibody synthesis during experimental African trypanosomiasis,” Journal of Immunology, vol. 122, no. 1, pp. 296–301, 1979. View at Scopus
  215. K. W. Schleifer, H. Filutowicz, L. R. Schopf, and J. M. Mansfield, “Characterization of T helper cell responses to the trypanosome variant surface glycoprotein,” Journal of Immunology, vol. 150, no. 7, pp. 2910–2919, 1993. View at Scopus
  216. W. I. Morrison and M. Murray, “The role of humoral immune responses in determining susceptibility of A/J and C57BL/6 mice to infection with Trypanosoma congolense,” Parasite Immunology, vol. 7, no. 1, pp. 63–79, 1985. View at Scopus
  217. K. A. Taylor, V. Lutje, D. Kennedy, et al., “Trypanosoma congolense: B-Lymphocyte responses differ between trypanotolerant and trypanosusceptible cattle,” Experimental Parasitology, vol. 83, no. 1, pp. 106–116, 1996. View at Publisher · View at Google Scholar · View at Scopus
  218. W. I. Morrison, S. J. Black, and J. Paris, “Protective immunity and specificity of antibody responses elicited in cattle by irradiated Trypanosoma brucei,” Parasite Immunology, vol. 4, no. 6, pp. 395–407, 1982. View at Scopus
  219. R. E. Duxbury, E. H. Sadun, B. T. Wellde, J. S. Anderson, and I. E. Muriithi, “Immunization of cattle with x-irradiated African trypanosomes,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 66, no. 2, pp. 349–350, 1972. View at Scopus
  220. D. M. Mosser and J. F. Roberts, “Trypanosoma brucei: recognition in vitro of two developmental forms by murine macrophages,” Experimental Parasitology, vol. 54, no. 3, pp. 310–316, 1982. View at Scopus
  221. W. Pan, O. Ogunremi, G. Wei, M. Shi, and H. Tabel, “CR3 (CD11b/CD18) is the major macrophage receptor for IgM antibody-mediated phagocytosis of African trypanosomes: diverse effect on subsequent synthesis of tumor necrosis factor α and nitric oxide,” Microbes and Infection, vol. 8, no. 5, pp. 1209–1218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  222. D. M. Reinitz and J. M. Mansfield, “T-cell-independent and T-cell-dependent B-cell responses to exposed variant surface glycoprotein epitopes in trypanosome-infected mice,” Infection and Immunity, vol. 58, no. 7, pp. 2337–2342, 1990. View at Scopus
  223. L. Schofield, M. J. McConville, D. Hansen, et al., “CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells,” Science, vol. 283, no. 5399, pp. 225–229, 1999. View at Publisher · View at Google Scholar · View at Scopus
  224. J. A. Macaskill, P. H. Holmes, D. D. Whitelaw, et al., “Immunological clearance of 75Se-labelled Trypanosoma brucei in mice. II. Mechanisms in immune animals,” Immunology, vol. 40, no. 4, pp. 629–635, 1980.
  225. W. L. Dempsey and J. M. Mansfield, “Lymphocyte function in experimental African trypanosomiasis. V. Role of antibody and the mononuclear phagocyte system in variant-specific immunity,” Journal of Immunology, vol. 130, no. 1, pp. 405–411, 1983. View at Scopus
  226. R. F. Levine and J. M. Mansfield, “Genetics of resistance to the African trypanosomes: III. Variant-specific antibody responses of H-2-compatible resistant and susceptible mice,” Journal of Immunology, vol. 133, no. 3, pp. 1564–1569, 1984. View at Scopus
  227. S. J. Black, C. N. Sendashonga, and P. Webster, “Regulation of parasite-specific antibody responses in resistant (C57BL/6) and susceptible (C3H/He) mice infected with Trypanosoma (trypanozoon) brucei brucei,” Parasite Immunology, vol. 8, no. 5, pp. 425–442, 1986. View at Scopus
  228. S. M. Mahan, L. Hendershot, and S. J. Black, “Control of trypanodestructive antibody responses and parasitemia in mice infected with Trypanosoma (Duttonella) vivax,” Infection and Immunity, vol. 54, no. 1, pp. 213–221, 1986. View at Scopus
  229. P. H. Lambert, M. Berney, and G. Kazyumba, “Immune complexes in serum and in cerebrospinal fluid in African trypanosomiasis. Correlation with polyclonal B cell activation and with intracerebral immunoglobulin synthesis,” Journal of Clinical Investigation, vol. 67, no. 1, pp. 77–85, 1981. View at Scopus
  230. B. A. Askonas, A. C. Corsini, C. E. Clayton, and B. M. Ogilvie, “Functional depletion of T- and B-memory cells and other lymphoid cell subpopulations during trypanosomiasis,” Immunology, vol. 36, no. 2, pp. 313–321, 1979.
  231. J. A. Ellis, J. R. Scott, and N. D. Machugh, “Peripheral blood leucocytes subpopulation dynamics during Trypanosoma congolense infection in Boran and N'Dama cattle: an analysis using monoclonal antibodies and flow cytometry,” Parasite Immunology, vol. 9, no. 3, pp. 363–378, 1987. View at Scopus
  232. K. M. Hudson and R. J. Terry, “Immunodepression and the course of infection of a chronic Trypanosoma brucei infection in mice,” Parasite Immunology, vol. 1, no. 4, pp. 317–326, 1979. View at Scopus
  233. S. Magez, A. Schwegmann, R. Atkinson, et al., “The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice,” PLoS Pathogens, vol. 4, no. 8, Article ID e1000122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  234. K. A. Taylor, “Immune responses of cattle to African trypanosomes: protective or pathogenic?” International Journal for Parasitology, vol. 28, no. 2, pp. 219–240, 1998. View at Publisher · View at Google Scholar · View at Scopus
  235. A. Darji, R. Lucas, S. Magez, et al., “Mechanisms underlying trypanosome-elicited immunosuppression,” Annales de la Societe Belge de Medecine Tropicale, vol. 72, supplement 1, pp. 27–38, 1992.
  236. J. N. Flynn and M. Sileghem, “The role of the macrophage in induction of immunosuppression in Trypanosoma congolense-infected cattle,” vol. 74, no. 2, pp. 310–316, 1991.
  237. M. Sileghem, A. Darji, and P. De Baetselier, “In vitro simulation of immunosuppresion caused by Trypanosoma brucei,” Immunology, vol. 73, no. 2, pp. 246–248, 1991.
  238. H. Tabel, G. Wei, and M. Shi, “T cells and immunopathogenesis of experimental African trypanosomiasis,” Immunological Reviews, vol. 225, no. 1, pp. 128–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  239. N. K. Borowy, J. M. Sternberg, D. Schreiber, C. Nonnengasser, and P. Overath, “Suppressive macrophages occurring in murine Trypanosoma brucei infection inhibit T-cell responses in vivo and in vitro,” Parasite Immunology, vol. 12, no. 3, pp. 233–246, 1990. View at Scopus
  240. M. Sileghem, A. Darji, R. Hamers, M. Van de Winkel, and P. De Baetselier, “Dual role of macrophages in the suppression of interleukin 2 production and interleukin 2 receptor expression in trypanosome-infected mice,” European Journal of Immunology, vol. 19, no. 5, pp. 829–835, 1989. View at Scopus
  241. K. W. Schleifer and J. M. Mansfield, “Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins,” Journal of Immunology, vol. 151, no. 10, pp. 5492–5503, 1993. View at Scopus
  242. A. Beschin, L. Brys, S. Magez, M. Radwanska, and P. De Baetselier, “Trypanosoma brucei infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms,” Journal of Leukocyte Biology, vol. 63, no. 4, pp. 429–439, 1998. View at Scopus
  243. N. A. Mabbott, P. S. Coulson, L. E. Smythies, R. A. Wilson, and J. M. Sternberg, “African trypanosome infections in mice that lack the interferon-γ receptor gene: nitric oxide-dependent and -independent suppression of T-cell proliferative responses and the development of anaemia,” Immunology, vol. 94, no. 4, pp. 476–480, 1998. View at Publisher · View at Google Scholar · View at Scopus
  244. A. Darji, A. Beschin, M. Sileghem, H. Heremans, L. Brys, and P. De Baetselier, “In vitro simulation of immunosuppression caused by Trypanosoma brucei: active involvement of gamma interferon and tumor necrosis factor in the pathway of suppression,” Infection and Immunity, vol. 64, no. 6, pp. 1937–1943, 1996. View at Scopus
  245. B. Namangala, L. Brys, S. Magez, P. De Baetselier, and A. Beschin, “Trypanosoma brucei brucei infection impairs MHC class II antigen presentation capacity of macrophages,” Parasite Immunology, vol. 22, no. 7, pp. 361–370, 2000. View at Publisher · View at Google Scholar · View at Scopus
  246. A. Darji, M. Sileghem, H. Heremans, L. Brys, and P. De Baetselier, “Inhibition of T-cell responsiveness during experimental infections with Trypanosoma brucei: active involvement of endogenous gamma interferon,” Infection and Immunity, vol. 61, no. 7, pp. 3098–3102, 1993. View at Scopus
  247. G. Raes, P. De Baetselier, W. Noël, A. Beschin, F. Brombacher, and H. G. Gholamreza, “Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages,” Journal of Leukocyte Biology, vol. 71, no. 4, pp. 597–602, 2002. View at Scopus
  248. B. Namangala, P. De Baetselier, W. Noël, L. Brys, and A. Beschin, “Alternative versus classical macrophage activation during experimental African trypanosomosis,” Journal of Leukocyte Biology, vol. 69, no. 3, pp. 387–396, 2001. View at Scopus
  249. L. Ding, P. S. Linsley, L. Y. Huang, R. N. Germain, and E. M. Shevach, “IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression,” Journal of Immunology, vol. 151, no. 3, pp. 1224–1234, 1993. View at Scopus
  250. M. Guilliams, G. Oldenhove, W. Noel, et al., “African trypanosomiasis: naturally occurring regulatory T cells favor trypanotolerance by limiting pathology associated with sustained type 1 inflammation,” Journal of Immunology, vol. 179, no. 5, pp. 2748–2757, 2007. View at Scopus
  251. M. Guilliams, T. Bosschaerts, M. Hérin, et al., “Experimental expansion of the regulatory T cell population increases resistance to African trypanosomiasis,” Journal of Infectious Diseases, vol. 198, no. 5, pp. 781–791, 2008. View at Publisher · View at Google Scholar · View at Scopus
  252. B. Stijlemans, T. N. Baral, M. Guilliams, et al., “A glycosylphosphatidylinositol-based treatment alleviates trypanosomiasis-associated immunopathology,” Journal of Immunology, vol. 179, no. 6, pp. 4003–4014, 2007. View at Scopus
  253. G. D. M. D'Ieteren, E. Authié, N. Wissocq, and M. Murray, “Trypanotolerance, an option for sustainable livestock production in areas at risk from trypanosomosis,” OIE Revue Scientifique et Technique, vol. 17, no. 1, pp. 154–175, 1998. View at Scopus
  254. J. Naessens, “Bovine trypanotolerance: a natural ability to prevent severe anaemia and haemophagocytic syndrome?” International Journal for Parasitology, vol. 36, no. 5, pp. 521–528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  255. B. Stijlemans, A. Vankrunkelsven, L. Brys, S. Magez, and P. De Baetselier, “Role of iron homeostasis in trypanosomiasis-associated anemia,” Immunobiology, vol. 213, no. 9-10, pp. 823–835, 2008. View at Publisher · View at Google Scholar · View at Scopus
  256. O. O. Akinbamijo, J. J. Bennison, J. Jaitner, and L. Dempfle, “Haematological changes in N'Dama and Gobra Zebu bulls during Trypanosoma congolense infection maintained under a controlled feeding regimen,” Acta Tropica, vol. 69, no. 3, pp. 181–192, 1998. View at Publisher · View at Google Scholar · View at Scopus
  257. K. A. Taylor and B. Mertens, “Immune Response of Cattle Infected with African trypanosomes,” Memorias do Instituto Oswaldo Cruz, vol. 94, no. 2, pp. 239–244, 1999. View at Scopus
  258. S. Magez, B. Stijlemans, M. Radwanska, E. Pays, M. A. J. Ferguson, and P. De Baetselier, “The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors,” Journal of Immunology, vol. 160, no. 4, pp. 1949–1956, 1998. View at Scopus
  259. S. Magez, C. Truyens, M. Merimi, et al., “P75 tumor necrosis factor-receptor shedding occurs as a protective host response during African trypanosomiasis,” Journal of Infectious Diseases, vol. 189, no. 3, pp. 527–539, 2004. View at Publisher · View at Google Scholar · View at Scopus
  260. M. C. Okomo-Assoumou, S. Daulouede, J.-L. Lemesre, A. N'Zila-Mouanda, and P. Vincendeau, “Correlation of high serum levels of tumor necrosis factor-α with disease severity in human African trypanosomiasis,” American Journal of Tropical Medicine and Hygiene, vol. 53, no. 5, pp. 539–543, 1995.
  261. V. Lejon, J. Lardon, G. Kenis, et al., “Interleukin (IL)-6, IL-8 and IL-10 in serum and CSF of Trypanosoma brucei gambiense sleeping sickness patients before and after treatment,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 96, no. 3, pp. 329–333, 2002. View at Publisher · View at Google Scholar · View at Scopus
  262. L. MacLean, M. Odiit, and J. M. Sternberg, “Nitric oxide and cytokine synthesis in human African trypanosomiasis,” Journal of Infectious Diseases, vol. 184, no. 8, pp. 1086–1090, 2001. View at Publisher · View at Google Scholar · View at Scopus
  263. C. A. Hunter, J. W. Gow, P. G. E. Kennedy, F. W. Jennings, and M. Murray, “Immunopathology of experimental African sleeping sickness: detection of cytokine mRNA in the brains of Trypanosoma brucei brucei-infected mice,” Infection and Immunity, vol. 59, no. 12, pp. 4636–4640, 1991.
  264. C. A. Hunter and P. G. E. Kennedy, “Immunopathology in central nervous system human African trypanosomiasis,” Journal of Neuroimmunology, vol. 36, no. 2-3, pp. 91–95, 1992. View at Scopus
  265. M. Sileghem, J. N. Flynn, L. Logan-Henfrey, and J. Ellis, “Tumour necrosis factor production by monocytes from cattle infected with Trypanosoma (Duttonella) vivax and Trypanosoma (Nannomonas) congolense: possible association with severity of anaemia associated with the disease,” Parasite Immunology, vol. 16, no. 1, pp. 51–54, 1994. View at Scopus
  266. P. P. Simarro, J. Jannin, and P. Cattand, “Eliminating human African trypanosomiasis: where do we stand and what comes next?” PLoS Medicine, vol. 5, no. 2, article e55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  267. J. Bouyer, F. Stachurski, A. S. Gouro, and R. Lancelot, “Control of bovine trypanosomosis by restricted application of insecticides to cattle using footbaths,” Veterinary Parasitology, vol. 161, no. 3-4, pp. 187–193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  268. M. O. Omolo, A. Hassanali, S. Mpiana, et al., “Prospects for developing odour baits to control Glossina fuscipes spp., the major vector of human African trypanosomiasis,” PLoS Neglected Tropical Diseases, vol. 3, no. 5, article e435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  269. A. F. Read, P. A. Lynch, and M. B. Thomas, “How to make evolution-proof insecticides for malaria control,” PLoS Biology, vol. 7, no. 4, article e1000058, 2009.
  270. P. G. E. Kennedy, “Human African trypanosomiasis of the CNS: current issues and challenges,” Journal of Clinical Investigation, vol. 113, no. 4, pp. 496–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  271. A. H. Fairlamb, “Chemotherapy of human African trypanosomiasis: current and future prospects,” Trends in Parasitology, vol. 19, no. 11, pp. 488–494, 2003. View at Publisher · View at Google Scholar · View at Scopus
  272. D. Legros, G. Ollivier, M. Gastellu-Etchegorry, et al., “Treatment of human African trypanosomiasis—present situation and needs for research and development,” Lancet Infectious Diseases, vol. 2, no. 7, pp. 437–440, 2002. View at Publisher · View at Google Scholar · View at Scopus
  273. C. Burri and R. Brun, “Eflornithine for the treatment of human African trypanosomiasis,” Parasitology Research, vol. 90, supplement 1, pp. S49–S52, 2003. View at Scopus
  274. C. Burri, S. Nkunku, A. Merolle, T. Smith, J. Blum, and R. Brun, “Efficacy of new, concise schedule for melarsoprol in treatment of sleeping sickness caused by Trypanosoma brucei gambiense: a randomised trial,” The Lancet, vol. 355, no. 9213, pp. 1419–1425, 2000. View at Scopus
  275. J. Pepin and F. Milord, “The treatment of human African trypanosomiasis,” Advances in Parasitology, vol. 33, pp. 1–47, 1994. View at Scopus
  276. C. Schmid, M. Richer, C. M. M. Bilenge, et al., “Effectiveness of a 10-day melarsoprol schedule for the treatment of late-stage human African trypanosomiasis: confirmation from a multinational study (IMPAMEL II),” Journal of Infectious Diseases, vol. 191, no. 11, pp. 1922–1931, 2005. View at Publisher · View at Google Scholar · View at Scopus
  277. C. Schmid, S. Nkunku, A. Merolle, P. Vounatsou, and C. Burri, “Efficacy of 10-day melarsoprol schedule 2 years after treatment for late-stage gambiense sleeping sickness,” The Lancet, vol. 364, no. 9436, pp. 789–790, 2004. View at Publisher · View at Google Scholar · View at Scopus
  278. F. W. Jennings, J. Rodgers, B. Bradley, G. Gettinby, P. G. E. Kennedy, and M. Murray, “Human African trypanosomiasis: potential therapeutic benefits of an alternative suramin and melarsoprol regimen,” Parasitology International, vol. 51, no. 4, pp. 381–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  279. M. Eisler, J. Brandt, B. Bauer, et al., “Standardised tests in mice and cattle for the detection of drug resistance in tsetse-transmitted trypanosomes of African domestic cattle,” Veterinary Parasitology, vol. 97, no. 3, pp. 171–182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  280. S. Geerts, P. H. Holmes, O. Diall, and M. C. Eisler, “African bovine trypanosomiasis: the problem of drug resistance,” Trends in Parasitology, vol. 17, no. 1, pp. 25–28, 2001. View at Scopus
  281. V. Delespaux, D. Geysen, P. A. O. Majiwa, and S. Geerts, “Identification of a genetic marker for isometamidium chloride resistance in Trypanosoma congolense,” International Journal for Parasitology, vol. 35, no. 2, pp. 235–243, 2005. View at Publisher · View at Google Scholar · View at Scopus
  282. A. S. Peregrine, “Chemotherapy and delivery systems: haemoparasites,” Veterinary Parasitology, vol. 54, no. 1–3, pp. 223–248, 1994. View at Publisher · View at Google Scholar · View at Scopus
  283. P. Van den Bossche, M. Doran, and R. J. Connor, “An analysis of trypanocidal drug use in the Eastern Province of Zambia,” Acta Tropica, vol. 75, no. 2, pp. 247–258, 2000. View at Publisher · View at Google Scholar · View at Scopus
  284. C. J. Bacchi, “Resistance to clinical drugs in African trypanosomes,” Parasitology Today, vol. 9, no. 5, pp. 190–193, 1993. View at Publisher · View at Google Scholar · View at Scopus
  285. P. Mäser, A. Lüscher, and R. Kaminsky, “Drug transport and drug resistance in African trypanosomes,” Drug Resistance Updates, vol. 6, no. 5, pp. 281–290, 2003. View at Publisher · View at Google Scholar · View at Scopus
  286. N. S. Carter, B. J. Berger, and A. H. Fairlamb, “Uptake of diamidine drugs by the P2 nucleoside transporter in melarsen-sensitive and-resistant Trypanosoma brucei brucei,” The Journal of Biological Chemistry, vol. 270, no. 47, pp. 28153–28157, 1995. View at Publisher · View at Google Scholar · View at Scopus
  287. A. H. Fairlamb, N. S. Carter, M. Cunningham, and K. Smith, “Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism,” Molecular and Biochemical Parasitology, vol. 53, no. 1-2, pp. 213–222, 1992. View at Publisher · View at Google Scholar · View at Scopus
  288. H. Pospichal, R. Brun, R. Kaminsky, and L. Jenni, “Induction of resistance to melarsenoxide cysteamine (Mel Cy) in Trypanosoma brucei brucei,” Acta Tropica, vol. 58, no. 3-4, pp. 187–197, 1994. View at Publisher · View at Google Scholar · View at Scopus
  289. E. Matovu, M. L. Stewart, F. Geiser, et al., “Mechanisms of arsenical and diamidine uptake and resistance in Trypanosoma brucei,” Eukaryotic Cell, vol. 2, no. 5, pp. 1003–1008, 2003. View at Publisher · View at Google Scholar · View at Scopus
  290. V. P. Alibu, C. Richter, F. Voncken, et al., “The role of Trypanosoma brucei MRPA in melarsoprol susceptibility,” Molecular and Biochemical Parasitology, vol. 146, no. 1, pp. 38–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  291. S. K. Shahi, R. L. Krauth-Siegel, and C. E. Clayton, “Overexpression of the putative thiol conjugate transporter TbMRPA causes melarsoprol resistance in Trypanosoma brucei,” Molecular Microbiology, vol. 43, no. 5, pp. 1129–1138, 2002. View at Publisher · View at Google Scholar · View at Scopus
  292. W. H. Witola, A. Tsuda, N. Inoue, K. Ohashi, and M. Onuma, “Acquired resistance to berenil in a cloned isolate of Trypanosoma evansi is associated with upregulation of a novel gene, TeDR40,” Parasitology, vol. 131, no. 5, pp. 635–646, 2005. View at Publisher · View at Google Scholar · View at Scopus
  293. B. Stijlemans, K. Conrath, V. Cortez-Retamozo, et al., “Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies: African trypanosomes as paradigm,” The Journal of Biological Chemistry, vol. 279, no. 2, pp. 1256–1261, 2004. View at Publisher · View at Google Scholar · View at Scopus
  294. E. Authié, A. Boulangé, D. Muteti, G. Lalmanach, F. Gauthier, and A. J. Musoke, “Immunisation of cattle with cysteine proteinases of Trypanosoma congolense: targetting the disease rather than the parasite,” International Journal for Parasitology, vol. 31, no. 13, pp. 1429–1433, 2001. View at Publisher · View at Google Scholar · View at Scopus
  295. G. W. Lubega, D. K. Byarugaba, and R. K. Prichard, “Immunization with a tubulin-rich preparation from Trypanosoma brucei confers broad protection against African trypanosomosis,” Experimental Parasitology, vol. 102, no. 1, pp. 9–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  296. S.-Q. Li, M.-C. Fung, S. A. Reid, N. Inoue, and Z.-R. Lun, “Immunization with recombinant beta-tubulin from Trypanosoma evansi induced protection against T. evansi, T. equiperdum and T. b. brucei infection in mice,” Parasite Immunology, vol. 29, no. 4, pp. 191–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  297. N. Antoine-Moussiaux, P. Büscher, and D. Desmecht, “Host-parasite interactions in trypanosomiasis: on the way to an antidisease strategy,” Infection and Immunity, vol. 77, no. 4, pp. 1276–1284, 2009. View at Publisher · View at Google Scholar · View at Scopus