About this Journal Submit a Manuscript Table of Contents
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 418382, 14 pages
http://dx.doi.org/10.1155/2010/418382
Research Article

Are the Immunocompetence and the Presence of Metazoan Parasites in Cyprinid Fish Affected by Reproductive Efforts of Cyprinid Fish?

Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic

Received 31 July 2009; Accepted 23 October 2009

Academic Editor: Jorge Morales-Montor

Copyright © 2010 Karolína Rohlenová and Andrea Šimková. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Roff, The Evolution of Life Histories: Theory and Analysis, Chapman & Hall, New York, NY, USA, 1992.
  2. S. C. Stearns, The Evolution of Life Histories, Oxford University Press, Oxford, UK, 1992.
  3. B. C. Sheldon and S. Verhulst, “Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology,” Trends in Ecology & Evolution, vol. 11, no. 8, pp. 317–321, 1996. View at Publisher · View at Google Scholar
  4. A. P. Møller, “Immune defence, extra-pair paternity, and sexual selection in birds,” Proceedings of the Royal Society B, vol. 264, no. 1381, pp. 561–566, 1997. View at Publisher · View at Google Scholar
  5. T. Szép and A. P. Møller, “Cost of parasitism and host immune defence in the sand martin Riparia riparia: a role for parent-offspring conflict?” Oecologia, vol. 119, no. 1, pp. 9–15, 1999. View at Publisher · View at Google Scholar
  6. D. Hasselquist, M. F. Wasson, and D. W. Winkler, “Humoral immunocompetence correlates with date of egg-laying and reflects work load in female tree swallows,” Behavioral Ecology, vol. 12, no. 1, pp. 93–97, 2001.
  7. A. P. Møller and N. Saino, “Immune response and survival,” Oikos, vol. 104, no. 2, pp. 299–304, 2004. View at Publisher · View at Google Scholar
  8. N. Hillgarth, M. Ramenofsky, and J. Wingfield, “Testosterone and sexual selection,” Behavioral Ecology, vol. 8, no. 1, pp. 108–112, 1997.
  9. F. Skarstein, I. Folstad, and S. Liljedal, “Whether to reproduce or not: Immune suppression and costs of parasites during reproduction in the Arctic charr,” Canadian Journal of Zoology, vol. 79, no. 2, pp. 271–278, 2001. View at Publisher · View at Google Scholar
  10. E. Ottová, A. Šimková, P. Jurajda, et al., “Sexual ornamentation and parasite infection in males of common bream (Abramis brama): a reflection of immunocompetence status or simple cost of reproduction?” Evolutionary Ecology Research, vol. 7, no. 4, pp. 581–593, 2005.
  11. W. D. Hamilton and M. Zuk, “Heritable true fitness and bright birds: a role for parasites?” Science, vol. 218, no. 4570, pp. 384–387, 1982.
  12. W. J. Hamilton and R. Poulin, “The Hamilton and Zuk hypothesis revisited: a meta-analytical approach,” Behaviour, vol. 134, no. 4-5, pp. 299–320, 1997.
  13. A. P. Møller, P. Christe, and E. Lux, “Parasitism, host immune function, and sexual selection,” Quarterly Review of Biology, vol. 74, no. 1, pp. 3–20, 1999.
  14. M. L. Roberts, K. L. Buchanan, and M. R. Evans, “Testing the immunocompetence handicap hypothesis: a review of the evidence,” Animal Behaviour, vol. 68, no. 2, pp. 227–239, 2004. View at Publisher · View at Google Scholar
  15. I. Folstad and A. J. Karter, “Parasites, bright males, and the immunocompetence handicap,” American Naturalist, vol. 139, no. 3, pp. 603–622, 1992. View at Publisher · View at Google Scholar
  16. I. Folstad and F. Skarstein, “Is male germ line control creating avenues for female choice?” Behavioral Ecology, vol. 8, no. 1, pp. 109–112, 1997.
  17. S. Liljedal, I. Folstad, and F. Skarstein, “Secondary sex traits, parasites, immunity and ejaculate quality in the Arctic charr,” Proceedings of the Royal Society B, vol. 266, no. 1431, pp. 1893–1898, 1999. View at Publisher · View at Google Scholar
  18. R. Kortet, A. Vainikka, M. J. Rantala, and J. Taskinen, “Sperm quality, secondary sexual characters and parasitism in roach (Rutilus rutilus L.),” Biological Journal of the Linnean Society, vol. 81, no. 1, pp. 111–117, 2004. View at Publisher · View at Google Scholar
  19. V. Baruš and O. Oliva, Lampreys (Petromyzones) and Fishes (Osteichthyes). Fauna of the Czech and Slovak Republics, Academia, Praha, Czech Republic, 1995.
  20. M. L. Wiley and B. B. Collette, “Breeding tubercles and contact organs in fishes: their occurrence, structure and significance,” Bulletin of the American Museum of Natural History, vol. 143, no. 3, pp. 143–216, 1970.
  21. R. Kortet, J. Taskinen, A. Vainikka, and H. Ylönen, “Breeding tubercles, papillomatosis and dominance behaviour of male roach (Rutilus rutilus) during the spawning period,” Ethology, vol. 110, no. 8, pp. 591–601, 2004. View at Publisher · View at Google Scholar
  22. C. Wedekind, “Detailed information about parasites revealed by sexual ornamentation,” Proceedings of the Royal Society B, vol. 247, no. 1320, pp. 169–174, 1992.
  23. J. Taskinen and R. Kortet, “Dead and alive parasites: sexual ornaments signal resistance in the male fish, Rutilus rutilus,” Evolutionary Ecology Research, vol. 4, no. 6, pp. 919–929, 2002.
  24. F. Skarstein and I. Folstad, “Sexual dichromatism and the immunocompetence handicap: an observational approach using Arctic charr,” Oikos, vol. 76, no. 2, pp. 359–367, 1996.
  25. H. Modrá, Z. Svobodová, and J. Kolářová, “Comparison of differential leukocyte counts in fish of economic and indicator importance,” Acta Veterinaria Brno, vol. 67, no. 4, pp. 215–226, 1998.
  26. L. Kubala, A. Lojek, M. Číž, J. Vondráček, M. Dušková, and H. Slavíková, “Determination of phagocyte activity in whole blood of carp (Cyprinus carpio) by luminol-enhanced chemiluminescence,” Veterinarni Medicina, vol. 41, no. 10, pp. 323–327, 1996.
  27. R. Ergens and J. Lom, Causative Agents of Parasitic Fish Diseases, Academia, Prague, Czech Republic, 1970.
  28. T. Bolger and P. L. Connolly, “The selection of suitable indices for the measurement and analysis of fish condition,” Journal of Fish Biology, vol. 34, no. 2, pp. 171–182, 1989.
  29. A. V. Gusev, “Metazoan parasites—part I,” in Identification Key to Parasites of Freshwater Fish, O. N. Bauer, Ed., vol. 2, p. 424, Nauka, Leningrad, Russia, 1985.
  30. I. A. Khotenovsky, Fauna of the SSSR, Monogenea, Nauka, Leningrad, Russia, 1985.
  31. T. Scholz, “Amphilinida and Cestoda, parasites of fish in Czechoslovakia,” Acta Scientiarum Naturalium Academiae Scientiarum Bohemicae Brno, vol. 23, no. 4, pp. 1–56, 1989.
  32. F. Moravec, Parasitic Nematodes of Freshwater Fishes of Europe, Academia and Kluwer Academic Publishers, Praha, Czech Republic, 1994.
  33. B. Georgiev, V. Bisekov, and T. Genov, “The staining method for cestodes with iron acetocarmine,” Helminthologia, vol. 23, pp. 279–281, 1986.
  34. Z. Svobodová, D. Pravda, and J. Paláčková, Unified Methods of Haematological Examination of Fish, vol. 22, Manuals of Research Institute of Fish Culture and Hydrobiology, University of South Bohemia, Vodňany, Czech Republic, 1991.
  35. Z. Svobodová, D. Pravda, and J. Paláčková, Universal Methods of Haematological Investigations in Fish, Edice Metodik, no. 22, VÚRH, Vodňany, Czech Republic, 1986.
  36. V. Lusková, “Annual cycles and normal values of hematological parameters in fishes,” Acta Scientiarum Naturalium Academiae Scientiarum Bohemicae Brno, vol. 31, no. 5, p. 70, 1997.
  37. J. Šterzl, The Immune System and Its Physiological Functions, Czech Society for Immunology, Prague, Czech Republic, 1993.
  38. A. O. Bush, K. D. Lafferty, J. M. Lotz, and A. W. Shostak, “Parasitology meets ecology on its own terms: margolis et al. revisited,” Journal of Parasitology, vol. 83, no. 4, pp. 575–583, 1997. View at Publisher · View at Google Scholar
  39. G. A. Wedemeyer, B. A. Barton, and D. J. McLeay, “Stress and acclimation,” in Methods for Fish Biology, C. B. Schreck and P. B. Moyle, Eds., pp. 451–489, American Fisheries Society, Bethesda, Md, USA, 1990.
  40. A. L. Pulsford, S. Lemaire-Gony, M. Tomlinson, N. Collingwood, and P. J. Glynn, “Effects of acute stress on the immune system of the dab, Limanda limanda,” Comparative Biochemistry and Physiology C, vol. 109, no. 2, pp. 129–139, 1994. View at Publisher · View at Google Scholar
  41. A. Larsson, K. J. Lehtinen, and C. Haux, “Biochemical and hematological effects of a titanium dioxide industrial effluent on fish,” Bulletin of Environmental Contamination and Toxicology, vol. 25, no. 3, pp. 427–435, 1980.
  42. K. R. Munkittrick and J. F. Leatherland, “Haematocrit values in feral goldfish, Carassius auratus L., as indicators of the health of the population,” Journal of Fish Biology, vol. 23, pp. 153–161, 1982.
  43. P. W. Wester, A. D. Vethaak, and W. B. van Muiswinkel, “Fish as biomarkers in immunotoxicology,” Toxicology, vol. 86, no. 3, pp. 213–232, 1994. View at Publisher · View at Google Scholar
  44. A. E. Ellis, “The function of teleost fish lymphocytes in relation to inflammation,” International Journal of Tissue Reactions, vol. 8, no. 4, pp. 263–270, 1986.
  45. D. T. Richards, D. Hoole, J. W. Lewis, E. Evans, and C. Arme, “Changes in the cellular composition of the spleen and pronephros of carp Cyprinus carpio infected with the blood fluke Sanguinicola inermis (Trematoda: Sanguinicolidae),” Diseases of Aquatic Organisms, vol. 19, no. 3, pp. 173–179, 1994.
  46. C. J. Secombes and L. H. Chappell, “Fish immune responses to experimental and natural infection with helminth parasites,” Annual Review of Fish Diseases, vol. 6, pp. 167–177, 1996. View at Publisher · View at Google Scholar
  47. K. Buchmann, “Immune mechanisms in fish skin against monogeneans—a model,” Folia Parasitologica, vol. 46, no. 1, pp. 1–9, 1999.
  48. S. R. M. Jones, “The occurrence and mechanisms of innate immunity against parasites in fish,” Developmental and Comparative Immunology, vol. 25, no. 8-9, pp. 841–852, 2001. View at Publisher · View at Google Scholar
  49. K. Buchmann and T. Lindenstrøm, “Interactions between monogenean parasites and their fish hosts,” International Journal for Parasitology, vol. 32, no. 3, pp. 309–319, 2002. View at Publisher · View at Google Scholar
  50. T. K. Hatice, Z. Erdogan, and R. Coz-Rakovac, “The occurrence of Ligula intestinalis (L.) observed in chub (Leuciscus cephalus L.) from Caparlipatlak Dam lake, Ivrindi-Balikesir, Turkey,” Periodicum Biologorum, vol. 108, no. 2, pp. 183–187, 2006.
  51. G. Muñoz, A. S. Grutter, and T. H. Cribb, “Structure of the parasite communities of a coral reef fish assemblage (Labridae): testing ecological and phylogenetic host factors,” Journal of Parasitology, vol. 93, no. 1, pp. 17–30, 2007. View at Publisher · View at Google Scholar
  52. V. L. Vladimirov, “The immunity of fishes in the case of dactylogyrosis,” Parasitologiya, vol. 5, pp. 51–58, 1971 (Russian).
  53. K. Buchmann, “A note on the humoral immune response of infected Anguilla anguilla against the gill monogenean Pseudodactylogyrus bini,” Fish & Shellfish Immunology, vol. 3, no. 5, pp. 397–399, 1993. View at Publisher · View at Google Scholar
  54. K. Buchmann, “Binding and lethal effect of complement from Oncorhynchus mykiss on Gyrodactylus derjavini (Platyhelminthes: Monogenea),” Diseases of Aquatic Organisms, vol. 32, no. 3, pp. 195–200, 1998.
  55. P. D. Harris, A. Soleng, and T. A. Bakke, “Killing of Gyrodactylus salaris (Platyhelminthes, Monogenea) mediated by host complement,” Parasitology, vol. 117, no. 2, pp. 137–143, 1998. View at Publisher · View at Google Scholar
  56. M. Rubio-Godoy, R. Porter, and R. C. Tinsley, “Evidence of complement-mediated killing of Discocotyle sagittata (Platyhelminthes, Monogenea) oncomiracidia,” Fish & Shellfish Immunology, vol. 17, no. 2, pp. 95–103, 2004. View at Publisher · View at Google Scholar · View at PubMed
  57. K. Buchmann and A. Uldal, “Gyrodactylus derjavini infections in four salmonids: comparative host susceptibility and site selection of parasites,” Disease of Aquatic Organisms, vol. 28, no. 3, pp. 201–209, 1997.
  58. K. Buchmann and J. Bresciani, “Microenvironment of Gyrodactylus derjavini on rainbow trout Oncorhynchus mykiss: association between mucous cell density in skin and site selection,” Parasitology Research, vol. 84, no. 1, pp. 17–24, 1997.
  59. A. Sitja-Bobadilla, “Living off a fish: a trade-off between parasites and the immune system,” Fish & Shellfish Immunology, vol. 25, no. 4, pp. 358–372, 2008. View at Publisher · View at Google Scholar · View at PubMed
  60. J. E. Bly and L. W. Clem, “Temperature and teleost immune functions,” Fish & Shellfish Immunology, vol. 2, no. 3, pp. 159–171, 1992.
  61. M. E. Collazos, E. Ortega, and C. Barriga, “Effect of temperature on the immune system of a cyprinid fish (Tinca tinca, L). Blood phagocyte function at low temperature,” Fish & Shellfish Immunology, vol. 4, no. 3, pp. 231–238, 1994. View at Publisher · View at Google Scholar
  62. T. H. Hutchinson and M. J. Manning, “Seasonal trends in serum lysozyme activity and total protein concentration in dab (Limanda limanda L.) sampled from Lyme Bay, U.K,” Fish & Shellfish Immunology, vol. 6, no. 7, pp. 473–482, 1996. View at Publisher · View at Google Scholar
  63. G. Scapigliati, D. Scalia, A. Marras, S. Meloni, and M. Mazzini, “Immunoglobulin levels in the teleost sea bass Dicentrarchus labrax (L.) in relation to age, season, and water oxygenation,” Aquaculture, vol. 174, no. 3-4, pp. 207–212, 1999. View at Publisher · View at Google Scholar
  64. A. L. Langston, R. Hoare, M. Stefansson, R. Fitzgerald, H. Wergeland, and M. Mulcahy, “The effect of temperature on non-specific defence parameters of three strains of juvenile Atlantic halibut (Hippoglossus hippoglossus L.),” Fish & Shellfish Immunology, vol. 12, no. 1, pp. 61–76, 2002. View at Publisher · View at Google Scholar
  65. A. Hernández and L. Tort, “Annual variation of complement, lysozyme and haemagglutinin levels in serum of the gilthead sea bream Sparus aurata,” Fish & Shellfish Immunology, vol. 15, no. 5, pp. 479–481, 2003. View at Publisher · View at Google Scholar
  66. T. J. Bowden, R. Butler, and I. R. Bricknell, “Seasonal variation of serum lysozyme levels in Atlantic halibut (Hippoglossus hippoglossus L.),” Fish & Shellfish Immunology, vol. 17, no. 2, pp. 129–135, 2004. View at Publisher · View at Google Scholar · View at PubMed
  67. T. Poisot, A. Šimková, P. Hyršl, and S. Morand, “Interactions between immunocompetence, somatic condition and parasitism in the chub Leuciscus cephalus in early spring,” Journal of Fish Biology, vol. 75, no. 7, pp. 1667–1682, 2009. View at Publisher · View at Google Scholar
  68. K. Lamková, A. Šimková, M. Palíková, P. Jurajda, and A. Lojek, “Seasonal changes of immunocompetence and parasitism in chub (Leuciscus cephalus), a freshwater cyprinid fish,” Parasitology Research, vol. 101, no. 3, pp. 775–789, 2007. View at Publisher · View at Google Scholar · View at PubMed
  69. V. Hanzelová and D. Gerdeaux, “Seasonal occurrence of the tapeworm Proteocephalus longicollis and its transmission from copepod intermediate host to fish,” Parasitology Research, vol. 91, no. 2, pp. 130–136, 2003. View at Publisher · View at Google Scholar · View at PubMed
  70. T. Scholz and F. Moravec, “Seasonal dynamics of Proteocephalus torulosus (Cestoda: Proteocephalidae) in barbel (Barbus barbus) from the Jihlava River, Czech Republic,” Folia Parasitologica, vol. 41, no. 4, pp. 253–257, 1994.
  71. P. Alvarez-Pellitero, “Fish immunity and parasite infections: from innate immunity to immunoprophylactic prospects,” Veterinary Immunology and Immunopathology, vol. 126, no. 3-4, pp. 171–198, 2008. View at Publisher · View at Google Scholar · View at PubMed
  72. T. C. Fletcher, A. White, and B. A. Baldo, “Isolation of a phosphorylcholine-containing component from the turbot tapeworm, Bothriocephalus scorpii (Müller), and its reaction with C-reactive protein,” Parasite Immunology, vol. 2, no. 4, pp. 237–248, 1980. View at Publisher · View at Google Scholar
  73. N. A. Evans, “The occurrence of Sphaerostoma bramae (Digenea: Allocreadiidae) in the roach from the Worcester-Birmingham canal,” Journal of Helminthology, vol. 51, no. 3, pp. 189–196, 1977.
  74. M. Kalbe and J. Kurtz, “Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum,” Parasitology, vol. 132, no. 1, pp. 105–116, 2006. View at Publisher · View at Google Scholar · View at PubMed
  75. A. Murad and S. Mustafa, “Blood parameters of catfish, Heteropneustes fossilis (Bloch), parasitized by metacercariae of Diplostomum sp,” Journal of Fish Diseases, vol. 11, no. 4, pp. 365–368, 1988.
  76. M. Taylor and D. Hoole, “Ligula intestinalis (L.) (Cestoda: Pseudophyllidea): plerocercoid-induced changes in the spleen and pronephros of roach, Rutilus rutilus (L.), and gudgeon, Gobio gobio (L.),” Journal of Fish Biology, vol. 34, no. 4, pp. 583–596, 1989.
  77. S. Morand and R. Poulin, “Nematode parasite species richness and the evolution of spleen size in birds,” Canadian Journal of Zoology, vol. 78, no. 8, pp. 1356–1360, 2000.
  78. A. Šimková, T. Lafond, M. Ondračková, P. Jurajda, E. Ottová, and S. Morand, “Parasitism, life history traits and immune defence in cyprinid fish from Central Europe,” BMC Evolutionary Biology, vol. 8, no. 29, pp. 1–11, 2008.
  79. C. Wedekind and I. Folstad, “Adaptive or nonadaptive immunosuppression by sex hormones?” The American Naturalist, vol. 143, no. 5, pp. 936–938, 1994.
  80. M. E. Viney, E. M. Riley, and K. L. Buchanan, “Optimal immune responses: immunocompetence revisited,” Trends in Ecology & Evolution, vol. 20, no. 12, pp. 665–669, 2005. View at Publisher · View at Google Scholar · View at PubMed